Background: Production of chimeric mice is a useful tool for the elucidation of gene function. After successful isolation of embryonic stem (ES) cell lines, there are many methods for producing chimeras, including ...Background: Production of chimeric mice is a useful tool for the elucidation of gene function. After successful isolation of embryonic stem (ES) cell lines, there are many methods for producing chimeras, including co-culture with the embryos, microinjection of the ES ceils into pre-implantation embryos, and use of tetraploid embryos to generate the full ES-derived transgenic mice. Here, we aimed to generate the transgenic ES cell line, compare the production efficiency of chimeric mice and its proportion to yield the male chimeric mice by microinjected ES cells into 4- to 8-cell and blastocysts embryos with the application of Piezo-Micromanipulator (PMM), and trace the fate of the injected ES cells. Results: We successfully generated a transgenic ES cell line and proved that this cell line still maintained pluripotency. Although we achieved a satisfactory chimeric mice rate, there was no significant difference in the production of chimeric mice using the two different methods, but the proportion of the male chimeric mice in the 4- to 8-cell group was higher than in the blastocyst group. We also found that there was no tendency for ES cells to aggregate into the inner cell mass using in vitro culture of the chimeric embryos, indicating that they aggregated randomly. Conclusions: These results showed that the PMM method is a convenient way to generate chimeric mice and microinjection of ES cells into 4- to 8-cell embryos can increase the chance of yielding male chimeras compared to the blastocyst injection. These results provide useful data in transgenic research mediated by ES cells.展开更多
基金supported by the National Basic Research and Development Program of China(973 ProgramNo.2011CB944202+2 种基金2010CB945001and 2009CB941601)the National Science Supporting Plan of China(2011BAD19B03)
文摘Background: Production of chimeric mice is a useful tool for the elucidation of gene function. After successful isolation of embryonic stem (ES) cell lines, there are many methods for producing chimeras, including co-culture with the embryos, microinjection of the ES ceils into pre-implantation embryos, and use of tetraploid embryos to generate the full ES-derived transgenic mice. Here, we aimed to generate the transgenic ES cell line, compare the production efficiency of chimeric mice and its proportion to yield the male chimeric mice by microinjected ES cells into 4- to 8-cell and blastocysts embryos with the application of Piezo-Micromanipulator (PMM), and trace the fate of the injected ES cells. Results: We successfully generated a transgenic ES cell line and proved that this cell line still maintained pluripotency. Although we achieved a satisfactory chimeric mice rate, there was no significant difference in the production of chimeric mice using the two different methods, but the proportion of the male chimeric mice in the 4- to 8-cell group was higher than in the blastocyst group. We also found that there was no tendency for ES cells to aggregate into the inner cell mass using in vitro culture of the chimeric embryos, indicating that they aggregated randomly. Conclusions: These results showed that the PMM method is a convenient way to generate chimeric mice and microinjection of ES cells into 4- to 8-cell embryos can increase the chance of yielding male chimeras compared to the blastocyst injection. These results provide useful data in transgenic research mediated by ES cells.