期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Strengthening effect of Cu-rich phase precipitation in 18Cr9Ni3CuNbN austenitic heat-resisting steel 被引量:6
1
作者 Chengyu CHI Hongyao YU +4 位作者 Jianxin DONG Xishan XIE Zhengqiang CUI Xiaofang CHEN Fusheng LIN 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2011年第2期141-147,共7页
The Cu-containing austenitic heat-resistant steel 18Cr9Ni3CuNbN, which is being used as superheater and reheater tube material for modern ultra-super-critical (USC) power plants all over the world, has been investig... The Cu-containing austenitic heat-resistant steel 18Cr9Ni3CuNbN, which is being used as superheater and reheater tube material for modern ultra-super-critical (USC) power plants all over the world, has been investigated at 650 ℃ long time aging till 10 000 h. SEM, TEM and 3DAP (three dimensional atom probe) have been used to follow microstructural changes with mechanical property variations. Experimental results show that Cu-rich phase and MX precipitate in the grains as well as M 23 C 6 precipitates at grain boundaries are the main precipitation strengthening phases in this steel. Among them Cu-rich phase is the most important strengthening phase. Homogeneous distribution of very fine nano-size Cu-rich phase has been formed at very early stage of 650 ℃ aging (less than 1 h). Cu atoms gradually concentrate to Cu-rich particles and the other elements (such as Fe, Cr, Ni etc) diffuse away from Curich particles to γ-matrix with the increasing of aging time at 650 ? C. The growth rate of Cu-rich phase at 650 ℃ long time aging is very slow and the average diameters of Cu-rich phase have been determined by TEM method. Cu-rich phase keeps in about 30 nm till 650 ℃ aging for 10 000 h. It shows that nano-size Cu-rich phase precipitation strengthening can be kept for long time aging at 650 ℃ because of its excellent stability at high temperatures. According to structure stability study and mechanical properties determination results the Cu-rich phase precipitation sequence and its strengthening mechanism model have been suggested and discussed. 展开更多
关键词 austenitic heat-resistant steel Precipitation strengthening cu-rich phase MX M 23 c 6
原文传递
Microstructure Evolution and Mechanical Properties of HR3C Steel during Long-term Aging at High Temperature 被引量:15
2
作者 Bin WANG Zheng-dong LIU +2 位作者 Shi-chang CHENG Chun-ming LIU Jing-zhong WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第8期765-773,共9页
Microstructure evolution and the changes in mechanical properties of HR3 Csteel during long-term aging at650,700 and 750℃ were investigated.The precipitated phases of the aging steel included M23C6 carbides,Z-phase a... Microstructure evolution and the changes in mechanical properties of HR3 Csteel during long-term aging at650,700 and 750℃ were investigated.The precipitated phases of the aging steel included M23C6 carbides,Z-phase and a trace amount of Nb(C,N).The M23C6 carbides were distributed mainly at the grain boundary,while Z-phase was mainly inside the grains.Amounts of both M23C6 carbides and Z-phase during the aging process increased with increasing aging period and temperature.Coarsening of M23C6 carbides was influenced significantly by aging time and temperature,while the size of the Z-phase was relatively less affected by the aging time and temperature,which had a steady strengthening effect.Coarsening of the M23C6 carbides was the main reason for the decline in high temperature yield strength during long-term aging at 750℃.The M23C6 carbides were linked into a continuous chain along the grain boundary which accounted for the decrease of toughness during aging. 展开更多
关键词 hr3c steels microstructure evolutions mechanical propertys aging
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部