The application of single-cell RNA sequencing(scRNA-seq)in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategie...The application of single-cell RNA sequencing(scRNA-seq)in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategies.With the expansion of capacity for high-throughput scRNA-seq,including clinical samples,the analysis of these huge volumes of data has become a daunting prospect for researchers entering this field.Here,we review the workflow for typical scRNA-seq data analysis,covering raw data processing and quality control,basic data analysis applicable for almost all scRNA-seq data sets,and advanced data analysis that should be tailored to specific scientific questions.While summarizing the current methods for each analysis step,we also provide an online repository of software and wrapped-up scripts to support the implementation.Recommendations and caveats are pointed out for some specific analysis tasks and approaches.We hope this resource will be helpful to researchers engaging with scRNA-seq,in particular for emerging clinical applications.展开更多
Aggregation-induced emission(AIE)is an intriguing photophysical phenomenon,where specific materials exhibit a remarkable surge in luminescence when brought together in non-ideal solvents or within a solid matrix.Since ...Aggregation-induced emission(AIE)is an intriguing photophysical phenomenon,where specific materials exhibit a remarkable surge in luminescence when brought together in non-ideal solvents or within a solid matrix.Since the concept of AIE wasfirst introduced in 2001,numerous advanced applications have been gradually explored across various domains,including optics,electronics,energy,and the life sciences.Of particular note is the growing interest in the application of AIE systems with near-infrared(NIR)emissive feature in thefield of biomedicine,encompass-ing detection,imaging,and therapeutic interventions.Notably,bibliometric analysis serves as a valuable tool to provide researchers with a comprehensive understand-ing of research achievements and developmental trends in specificfields,which is crucial for academic research.Herein,we present a general bibliometric overview spanning two decades of NIR-AIE development.With the assistance of core scien-tific databases and various bibliometric software tools,we conducted a systematic analysis of annual publications and citations,the most influential countries/regions,leading authors,journals,and institutions,as well as the hot topics related to NIR applications and forward-looking predictions.Furthermore,the application of AIE with NIR properties in the biomedicalfield is also systematically reviewed.展开更多
The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens...The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens, which is a straight-forward way for targeted analysis. However, there are still limitations during the practical applications due to the big size of the antibodies, which accelerate the discovery of small molecular probes. Peptides built from various optional building blocks and easily achieved by chemical synthetic approaches with predictable conformations, are versatile and can act as tailor-made targeting vehicles.In this mini review, we summarize the recent developments in the discovery of novel peptides for bioanalytical and biomedical applications. Progresses in peptide-library design and selection strategies are presented. Recent achievements in the peptide-guided detection, imaging and disease treatment are also focused.展开更多
Recent years have witnessed the wide contributions made by transition metal dichalcogenides(TMDCs)to various fields, including the biomedical field. Here, to identify and further promote the development of biomedical ...Recent years have witnessed the wide contributions made by transition metal dichalcogenides(TMDCs)to various fields, including the biomedical field. Here, to identify and further promote the development of biomedical TMDCs, we provide a bibliometric analysis of literature regarding TMDCs for biomedical applications. Firstly, general bibliometric distributions of the dataset by year, country, institute, Web of Science category and referenced source are recognized. Following, we carefully explore the research hotspots of the TMDC-related biomedical field, among which biosensing, bioelectronics, cancer theranostics, antibacterial and tissue engineering are identified. The functions of TMDCs in each biomedical scenario, the related properties and research challenges are highlighted. Finally, future prospects are proposed to shed light on the design of novel TMDC-related biomaterials, potential new biomedical applications, as well as their clinical translation.展开更多
基金suppor ted by the National Key Research and Development Program of China (2022YFC2702502)the National Natural Science Foundation of China (32170742, 31970646, and 32060152)+7 种基金the Start Fund for Specially Appointed Professor of Jiangsu ProvinceHainan Province Science and Technology Special Fund (ZDYF2021SHFZ051)the Natural Science Foundation of Hainan Province (820MS053)the Start Fund for High-level Talents of Nanjing Medical University (NMUR2020009)the Marshal Initiative Funding of Hainan Medical University (JBGS202103)the Hainan Province Clinical Medical Center (QWYH202175)the Bioinformatics for Major Diseases Science Innovation Group of Hainan Medical Universitythe Shenzhen Science and Technology Program (JCYJ20210324140407021)
文摘The application of single-cell RNA sequencing(scRNA-seq)in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategies.With the expansion of capacity for high-throughput scRNA-seq,including clinical samples,the analysis of these huge volumes of data has become a daunting prospect for researchers entering this field.Here,we review the workflow for typical scRNA-seq data analysis,covering raw data processing and quality control,basic data analysis applicable for almost all scRNA-seq data sets,and advanced data analysis that should be tailored to specific scientific questions.While summarizing the current methods for each analysis step,we also provide an online repository of software and wrapped-up scripts to support the implementation.Recommendations and caveats are pointed out for some specific analysis tasks and approaches.We hope this resource will be helpful to researchers engaging with scRNA-seq,in particular for emerging clinical applications.
基金Talent Introduction Research Initiation Fund of Shanxi Bethune Hospital,Grant/Award Number:2022RC04Basic Research Program Youth Science Research Project of Shanxi province,Grant/Award Number:202203021212096+3 种基金Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases,Grant/Award Number:CXZX-202302Research Project Plan of Shanxi Provincial Administration of Traditional Chinese Medicine,Grant/Award Number:2023ZYYB2021National Natural Science Foundation of China,Grant/Award Number:21835001Fundamental Research Funds for the Central Universities of China。
文摘Aggregation-induced emission(AIE)is an intriguing photophysical phenomenon,where specific materials exhibit a remarkable surge in luminescence when brought together in non-ideal solvents or within a solid matrix.Since the concept of AIE wasfirst introduced in 2001,numerous advanced applications have been gradually explored across various domains,including optics,electronics,energy,and the life sciences.Of particular note is the growing interest in the application of AIE systems with near-infrared(NIR)emissive feature in thefield of biomedicine,encompass-ing detection,imaging,and therapeutic interventions.Notably,bibliometric analysis serves as a valuable tool to provide researchers with a comprehensive understand-ing of research achievements and developmental trends in specificfields,which is crucial for academic research.Herein,we present a general bibliometric overview spanning two decades of NIR-AIE development.With the assistance of core scien-tific databases and various bibliometric software tools,we conducted a systematic analysis of annual publications and citations,the most influential countries/regions,leading authors,journals,and institutions,as well as the hot topics related to NIR applications and forward-looking predictions.Furthermore,the application of AIE with NIR properties in the biomedicalfield is also systematically reviewed.
基金supported by the National Natural Science Foundation of China (21375134, 21475140, 21135006, 21321003)The National Basic Research Program of China (2015CB856300)the Chinese Academy of Sciences
文摘The complicated, highly dynamic and diverse nature of biosystems brings great challenges to the specific analysis of molecular processes of interest. Nature provides antibodies for the specific recognition of antigens, which is a straight-forward way for targeted analysis. However, there are still limitations during the practical applications due to the big size of the antibodies, which accelerate the discovery of small molecular probes. Peptides built from various optional building blocks and easily achieved by chemical synthetic approaches with predictable conformations, are versatile and can act as tailor-made targeting vehicles.In this mini review, we summarize the recent developments in the discovery of novel peptides for bioanalytical and biomedical applications. Progresses in peptide-library design and selection strategies are presented. Recent achievements in the peptide-guided detection, imaging and disease treatment are also focused.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000)the National Basic Research Program of China (Nos. 2020YFA0710702 and 2016YFA2021600)+2 种基金the National Natural Science Foundation of China (Nos. 51822207, 51772292 and 11621505)Chinese Academy of Sciences Youth Innovation Promotion Association (No. 2013007)CAS-Iranian Vice Presidency for Science and Technology Joint Research Project (No. 113111KYSB20190067)。
文摘Recent years have witnessed the wide contributions made by transition metal dichalcogenides(TMDCs)to various fields, including the biomedical field. Here, to identify and further promote the development of biomedical TMDCs, we provide a bibliometric analysis of literature regarding TMDCs for biomedical applications. Firstly, general bibliometric distributions of the dataset by year, country, institute, Web of Science category and referenced source are recognized. Following, we carefully explore the research hotspots of the TMDC-related biomedical field, among which biosensing, bioelectronics, cancer theranostics, antibacterial and tissue engineering are identified. The functions of TMDCs in each biomedical scenario, the related properties and research challenges are highlighted. Finally, future prospects are proposed to shed light on the design of novel TMDC-related biomaterials, potential new biomedical applications, as well as their clinical translation.