Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is chall...Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.展开更多
Solubilities and properties (density, conductivity and pH value) of solutions in the quaternary system Li +,K +//CO 2- 3,B 4O 2- 7-H 2O at 288 K were experimentally studied with the isothermal equilibrium method. The ...Solubilities and properties (density, conductivity and pH value) of solutions in the quaternary system Li +,K +//CO 2- 3,B 4O 2- 7-H 2O at 288 K were experimentally studied with the isothermal equilibrium method. The phase diagram of the system consisted of two invariant points E and F, five univariant curves, and four crystallization fields that belonged to K 2CO 3·3/2H 2O,Li 2 B 4O 7·3H 2O, K 2 B 4O 7 ·4H 2O and Li 2CO 3. The composition of the solution corresponding to E was w(CO 2- 3)=2.27 %, w(B 4O 2- 7) =6.05 %, w(K + ) =4.30%,w(Li + )=0.30 % and the equilibrium solids were Li 2 B 4O 7· 3H 2O+K 2 B 4O 7·4H 2O+Li 2CO 3;The composition of the solution for F was w(CO 2- 3) =22.45%,w(B 4O 2- 7)=1.88%,w(K + )=29.96%,w(Li + )=0.03% and the equilibrium solids were K 2CO 3·3/2H 2O+ K 2 B 4O 7·4H 2O+Li 2CO 3. K 2CO 3 possesses strong salting-out effect on K 2 B 4O 7,Li 2CO 3 and Li 2 B 4O 7.展开更多
文摘Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products.
文摘Solubilities and properties (density, conductivity and pH value) of solutions in the quaternary system Li +,K +//CO 2- 3,B 4O 2- 7-H 2O at 288 K were experimentally studied with the isothermal equilibrium method. The phase diagram of the system consisted of two invariant points E and F, five univariant curves, and four crystallization fields that belonged to K 2CO 3·3/2H 2O,Li 2 B 4O 7·3H 2O, K 2 B 4O 7 ·4H 2O and Li 2CO 3. The composition of the solution corresponding to E was w(CO 2- 3)=2.27 %, w(B 4O 2- 7) =6.05 %, w(K + ) =4.30%,w(Li + )=0.30 % and the equilibrium solids were Li 2 B 4O 7· 3H 2O+K 2 B 4O 7·4H 2O+Li 2CO 3;The composition of the solution for F was w(CO 2- 3) =22.45%,w(B 4O 2- 7)=1.88%,w(K + )=29.96%,w(Li + )=0.03% and the equilibrium solids were K 2CO 3·3/2H 2O+ K 2 B 4O 7·4H 2O+Li 2CO 3. K 2CO 3 possesses strong salting-out effect on K 2 B 4O 7,Li 2CO 3 and Li 2 B 4O 7.