期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Genome wide investigation of Hsf gene family in Phoebe bournei:identification,evolution,and expression after abiotic stresses 被引量:1
1
作者 Wenhai Liao Xinghao Tang +6 位作者 Jingshu Li Qiumian Zheng Ting Wang Shengze Cheng Shiping Chen Shijiang Cao Guangqiu Cao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期201-215,共15页
Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various he... Heat shock transcription factors(Hsfs)have important roles during plant growth and development and responses to abiotic stresses.The identification and func-tion of Hsf genes have been thoroughly studied in various herbaceous plant species,but not woody species,especially Phoebe bournei,an endangered,unique species in China.In this study,17 members of the Hsf gene family were identi-fied from P.bournei using bioinformatic methods.Phyloge-netic analysis indicated that PbHsf genes were grouped into three subfamilies:A,B,and C.Conserved motifs,three-dimensional structure,and physicochemical properties of the PbHsf proteins were also analyzed.The structure of the PbHsf genes varied in the number of exons and introns.Pre-diction of cis-acting elements in the promoter region indi-cated that PbHsf genes are likely involved in responses to plant hormones and stresses.A collinearity analysis dem-onstrated that expansions of the PbHsf gene family mainly take place via segmental duplication.The expression levels of PbHsf genes varied across different plant tissues.On the basis of the expression profiles of five representative PbHsf genes during heat,cold,salt,and drought stress,PbHsf pro-teins seem to have multiple functions depending on the type of abiotic stress.This systematic,genome-wide investigation of PbHsf genes in P.bournei and their expression patterns provides valuable insights and information for further func-tional dissection of Hsf proteins in this endangered,unique species. 展开更多
关键词 Phoebe bournei hsf gene family Evolutionary analysis Expression mechanism Abiotic stresses
下载PDF
Comprehensive identification and analyses of the Hsf gene family in the whole-genome of three Apiaceae species 被引量:6
2
作者 Qiaoying Pei Tong Yu +9 位作者 TongWu Qihang Yang Ke Gong Rong Zhou Chunlin Cui Ying Yu Wei Zhao Xi Kang Rui Cao Xiaoming Song 《Horticultural Plant Journal》 SCIE CSCD 2021年第5期457-468,共12页
Apiaceae is a major family from Apiales and includes many important vegetable and medicinal crops.Heat shock transcription factors(Hsf)play important roles in heat tolerance during plant development.Here,we conducted ... Apiaceae is a major family from Apiales and includes many important vegetable and medicinal crops.Heat shock transcription factors(Hsf)play important roles in heat tolerance during plant development.Here,we conducted systematic analyses of the Hsf gene family in three Apiaceae species,including 17 Apium graveolens(celery),32 Coriandrum sativum(coriander),and 14 Daucus carota(carrot).A total of 73 Hsf genes were identified in three representative species,including Arabidopsis thaliana,Vitis vinifera,and Lactuca sativa.Whole-genome duplication played important roles in the Hsf gene family’s expansion within Apiaceae.Interestingly,we found that coriander had more Hsf genes than celery and carrot due to greater expansion and fewer losses.Twenty-seven branches of the phylogenetic tree underwent considerable positive selection in these Apiaceae species.We also explored the expression patterns of Hsf genes in three plant organs.Collectively,this study will serve as a rich gene resource for exploring the molecular mechanisms of heat tolerance.Additionally,this is the first study to report on the Hsf gene family in Apiaceae;thus,our research will provide guidance for future comparative and functional genomic studies on the Hsf gene family and others in Apiaceae. 展开更多
关键词 hsf gene family Gene duplication and loss Expression pattern Apiaceae
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部