Integration of light signaling and diverse abiotic stress responses contribute to plant survival in a changing environment.Some reports have indicated that light signals contribute a plant’s ability to deal with heat...Integration of light signaling and diverse abiotic stress responses contribute to plant survival in a changing environment.Some reports have indicated that light signals contribute a plant’s ability to deal with heat,cold,and stress.However,the molecular link between light signaling and the saltresponse pathways remains unclear.We demonstrate here that increasing light intensity elevates the salt stress tolerance of plants.Depletion of HY5,a key component of light signaling,causes Arabidopsis thaliana to become salinity sensitive.Interestingly,the small heat shock protein(sHsp)family genes are upregulated in hy5-215 mutant plants,and HsfA 2 is commonly involved in the regulation of these sH sps.We found that HY5directly binds to the G-box motifs in the HsfA2promoter,with the cooperation of HISTONE DEACETYLASE 9(HDA9),to repress its expression.Furthermore,the accumulation of HDA9 and the interaction between HY5 and HDA9 are significantly enhanced by salt stress.On the contrary,high temperature triggers HY5 and HDA9 degradation,which leads to dissociation of HY5-HDA9from the HsfA2 promoter,thereby reducing salt tolerance.Under salt and heat stress conditions,fine tuning of protein accumulation and an interaction between HY5 and HDA9 regulate HsfA2 expression.This implies that HY5,HDA9,and HsfA2play important roles in the integration of light signaling with salt stress and heat shock response.展开更多
Peptidyl-prolyl isomerase-like 1(PPIL1)is associated with the human spliceosome complex.However,its function in pre-mRNA splicing remains unclear.In this study,we show that Arabidopsis thaliana CYCLOPHILIN 18-2(AtCYP1...Peptidyl-prolyl isomerase-like 1(PPIL1)is associated with the human spliceosome complex.However,its function in pre-mRNA splicing remains unclear.In this study,we show that Arabidopsis thaliana CYCLOPHILIN 18-2(AtCYP18-2),a PPIL1 homolog,plays an essential role in heat tolerance by regulating pre-mRNA splicing.Under heat stress conditions,AtCYP18-2 expression was upregulated in mature plants and GFP-tagged AtCYP18-2 redistributed to nuclear and cytoplasmic puncta.We determined that AtCYP18-2 interacts with several spliceosome complex B^(ACT)components in nuclear puncta and is primarily associated with the small nuclear RNAs U5 and U6 in response to heat stress.The AtCYP18-2 loss-of-function allele cyp18-2 engineered by CRISPR/Cas9-mediated gene editing exhibited a hypersensitive phenotype to heat stress relative to the wild type.Moreover,global transcriptome profiling showed that the cyp18-2 mutation affects alternative splicing of heat stress–responsive genes under heat stress conditions,particularly intron retention(IR).The abundance of most intron-containing transcripts of a subset of genes essential for thermotolerance decreased in cyp18-2 compared to the wild type.Furthermore,the intron-containing transcripts of two heat stress-related genes,HEAT SHOCK PROTEIN 101(HSP101)and HEAT SHOCK FACTOR A2(HSFA2),produced functional proteins.HSP101-IR-GFP localization was responsive to heat stress,and HSFA2-Ⅲ-IR interacted with HSF1 and HSP90.1 in plant cells.Our findings reveal that CYP18-2 functions as a splicing factor within the B~(ACT)spliceosome complex and is crucial for ensuring the production of adequate levels of alternatively spliced transcripts to enhance thermotolerance.展开更多
基金supported by the Talents Project of Henan Agricultural University (30601733)International Training Program for high-level Talents of Henan Province (30602056)。
文摘Integration of light signaling and diverse abiotic stress responses contribute to plant survival in a changing environment.Some reports have indicated that light signals contribute a plant’s ability to deal with heat,cold,and stress.However,the molecular link between light signaling and the saltresponse pathways remains unclear.We demonstrate here that increasing light intensity elevates the salt stress tolerance of plants.Depletion of HY5,a key component of light signaling,causes Arabidopsis thaliana to become salinity sensitive.Interestingly,the small heat shock protein(sHsp)family genes are upregulated in hy5-215 mutant plants,and HsfA 2 is commonly involved in the regulation of these sH sps.We found that HY5directly binds to the G-box motifs in the HsfA2promoter,with the cooperation of HISTONE DEACETYLASE 9(HDA9),to repress its expression.Furthermore,the accumulation of HDA9 and the interaction between HY5 and HDA9 are significantly enhanced by salt stress.On the contrary,high temperature triggers HY5 and HDA9 degradation,which leads to dissociation of HY5-HDA9from the HsfA2 promoter,thereby reducing salt tolerance.Under salt and heat stress conditions,fine tuning of protein accumulation and an interaction between HY5 and HDA9 regulate HsfA2 expression.This implies that HY5,HDA9,and HsfA2play important roles in the integration of light signaling with salt stress and heat shock response.
基金funded by the New Breeding Technology program(no,PJ01686202)the National Research Foundation of Korea(NRF+2 种基金No.2022R1A2B5B02002008)Research Initiative Programs of the Korea Research Institute of Bioscience and Biotechnology(KRIBBNo.5372322)grants to H.C.
文摘Peptidyl-prolyl isomerase-like 1(PPIL1)is associated with the human spliceosome complex.However,its function in pre-mRNA splicing remains unclear.In this study,we show that Arabidopsis thaliana CYCLOPHILIN 18-2(AtCYP18-2),a PPIL1 homolog,plays an essential role in heat tolerance by regulating pre-mRNA splicing.Under heat stress conditions,AtCYP18-2 expression was upregulated in mature plants and GFP-tagged AtCYP18-2 redistributed to nuclear and cytoplasmic puncta.We determined that AtCYP18-2 interacts with several spliceosome complex B^(ACT)components in nuclear puncta and is primarily associated with the small nuclear RNAs U5 and U6 in response to heat stress.The AtCYP18-2 loss-of-function allele cyp18-2 engineered by CRISPR/Cas9-mediated gene editing exhibited a hypersensitive phenotype to heat stress relative to the wild type.Moreover,global transcriptome profiling showed that the cyp18-2 mutation affects alternative splicing of heat stress–responsive genes under heat stress conditions,particularly intron retention(IR).The abundance of most intron-containing transcripts of a subset of genes essential for thermotolerance decreased in cyp18-2 compared to the wild type.Furthermore,the intron-containing transcripts of two heat stress-related genes,HEAT SHOCK PROTEIN 101(HSP101)and HEAT SHOCK FACTOR A2(HSFA2),produced functional proteins.HSP101-IR-GFP localization was responsive to heat stress,and HSFA2-Ⅲ-IR interacted with HSF1 and HSP90.1 in plant cells.Our findings reveal that CYP18-2 functions as a splicing factor within the B~(ACT)spliceosome complex and is crucial for ensuring the production of adequate levels of alternatively spliced transcripts to enhance thermotolerance.