The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
热激蛋白70(heat shock protein 70,Hsp70)在植物发育过程以及响应生物和非生物胁迫中起着重要作用。为探究小麦Hsp70基因家族进化关系、功能以及表达模式,本研究对乌拉尔图小麦、拟斯卑尔脱山羊草、二粒小麦、粗山羊草以及普通小麦的Hs...热激蛋白70(heat shock protein 70,Hsp70)在植物发育过程以及响应生物和非生物胁迫中起着重要作用。为探究小麦Hsp70基因家族进化关系、功能以及表达模式,本研究对乌拉尔图小麦、拟斯卑尔脱山羊草、二粒小麦、粗山羊草以及普通小麦的Hsp70基因进行全面的生物信息学分析,并通过RT-qPCR方法分析其部分Hsp70基因在不同外源激素和环境胁迫条件下的表达模式。结果表明,从乌拉尔图小麦、拟斯卑尔脱山羊草、二粒小麦、粗山羊草和普通小麦5个物种中,分别鉴定出30、41、60、28和94个Hsp70基因;系统发育分析表明5个物种Hsp70家族成员分为5个亚家族组,每组成员数量不相等,其中大部分成员分布在第Ⅰ组,且同一亚家族中大多数的Hsp70成员具有相似的基因结构和保守基序;进一步综合分析5个物种Hsp70基因的染色体定位和重复事件,发现Hsp70基因在5个物种的各染色体上分布不均匀,此外从5个物种中共发现12个串联重复事件和110个片段复制事件,表明片段复制事件促进了小麦Hsp70基因家族的扩张;顺式作用元件分析表明,5个物种Hsp70基因的启动子区域存在多种光响应元件、逆境响应元件、激素响应元件以及生长发育调节元件;此外RT-qPCR结果表明,5个物种部分Hsp70基因在不同激素处理和逆境胁迫下具有不同程度的响应,在高温和干旱胁迫下,所选8个Hsp70基因均上调表达。小麦及其祖先物种Hsp70基因的鉴定及其进化过程为进一步研究Hsp70基因在小麦生长发育过程中的功能以及在逆境胁迫下的响应机制提供理论基础。展开更多
To evaluate the combined effect of temperature and cadmium on the molecular responses of heat shock protein 70(hsp70)and P-glycoprotein(P-gp)in mantle,digestive gland and gills of Crassostrea gigas,oysters were expose...To evaluate the combined effect of temperature and cadmium on the molecular responses of heat shock protein 70(hsp70)and P-glycoprotein(P-gp)in mantle,digestive gland and gills of Crassostrea gigas,oysters were exposed to combinations of five temperature levels(10,15,20,25,and 30℃)and 10μg L^(-1)cadmium for 21 days.Oysters were sampled for mRNA quantification by qPCR,and the results showed that the P-gp gene expression changed significantly after treatment at different temperatures and different treatment times.The P-gp gene expression was the highest in the digestive gland.Compared with the control group,the P-gp gene expression in cadmium treatment groups at all the different temperatures were significantly higher than the control group.The control oysters(kept at 10℃during the whole experiment without cadmium)expressed low levels of hsp70,but the groups treated with cadmium displayed somewhat higher levels.The present study demonstrated hsp70 and P-gp played an important role in the detoxification of Cd in C.gigas,and confirmed temperature should be considered for the assessment of Cd-induced toxicity in oysters.展开更多
热休克蛋白70(heat shock protein 70, HSP70)在生物细胞或组织免受热或氧化应激等方面起着关键作用,是已知高度保守的蛋白质之一。由于全球环境持续升温,珊瑚大面积白化、死亡,珊瑚如何应对持续升温的抗逆机制是科学研究热点。本研究...热休克蛋白70(heat shock protein 70, HSP70)在生物细胞或组织免受热或氧化应激等方面起着关键作用,是已知高度保守的蛋白质之一。由于全球环境持续升温,珊瑚大面积白化、死亡,珊瑚如何应对持续升温的抗逆机制是科学研究热点。本研究从高温胁迫短指软珊瑚测序蛋白序列数据库分析鉴定出了28个HSP70蛋白家族成员,均为酸性亲水蛋白,大部分蛋白质结构较为稳定。亚细胞定位表明HSP70蛋白主要分布在珊瑚细胞核、细胞质中,在线粒体、内质网上也有少量分布。信号肽预测表明, 28个HSP70蛋白成员中26个没有信号肽,大部分不属于分泌蛋白,不存在跨膜结构。系统进化树结果表明短指软珊瑚HSP70蛋白家族成员聚成5大类。短指软珊瑚HSP70蛋白家族结构和保守基序分析中预测到了10条保守基序motif分为5个亚族。短指软珊瑚HSP70蛋白家族二级结构主要以α-螺旋和无规则卷曲为主,α-螺旋的含量占比大。28个HSP70家族蛋白中有25个预测到了N-糖基化位点,且位点个数在1~9范围内。28个HSP70家族蛋白均预测到磷酸化位点和O-糖基化位点,总个数分别在41~96和1~23范围内。本研究HSP70家族蛋白结果为今后珊瑚在应对全球升温胁迫中的适应机制等方面研究奠定了基础。展开更多
Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with human...Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with humans to a greater or lesser extent, and can generate adverse effects such as cellular stress when interacting with intra-and extracellular biomolecules. The skin is the first organ in contact with UV radiation, and the stress it generates can be analyzed by the expression of a bioindicator of cellular damage such as Hsp70. Therefore, the objective of the project was: to determine the effect of UVA, UVB and UVC radiation on HaCaT epithelial cells, by analyzing the expression of Hsp70. Materials and methods: HaCaT cells were cultured in vitro, which were irradiated with UVA, UVB and UVC light at different doses, to subsequently determine the degree of Hsp70 expression by Immunodetection by PAGE-SDS and Western Blot. Results: Basal expression of Hsp70 was observed in no irradiated HaCaT cells. When HaCaT cells were irradiated with UVA, UVB, UVC, an increase in this Hsp70 protein was observed. With UVA, a higher degree of expression was observed at a time of 30 minutes of irradiation. With UVB the highest expression shifted to a time of 20 minutes. With UVC, overexpression was observed after 10 minutes. Conclusion: UV radiation generates cellular stress on HaCaT cells, evaluated by the stress bioindicator Hsp70. According to the wavelength of UV radiation, those that have a shorter wavelength have a greater potential for cellular damage, such as UVC.展开更多
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
文摘热激蛋白70(heat shock protein 70,Hsp70)在植物发育过程以及响应生物和非生物胁迫中起着重要作用。为探究小麦Hsp70基因家族进化关系、功能以及表达模式,本研究对乌拉尔图小麦、拟斯卑尔脱山羊草、二粒小麦、粗山羊草以及普通小麦的Hsp70基因进行全面的生物信息学分析,并通过RT-qPCR方法分析其部分Hsp70基因在不同外源激素和环境胁迫条件下的表达模式。结果表明,从乌拉尔图小麦、拟斯卑尔脱山羊草、二粒小麦、粗山羊草和普通小麦5个物种中,分别鉴定出30、41、60、28和94个Hsp70基因;系统发育分析表明5个物种Hsp70家族成员分为5个亚家族组,每组成员数量不相等,其中大部分成员分布在第Ⅰ组,且同一亚家族中大多数的Hsp70成员具有相似的基因结构和保守基序;进一步综合分析5个物种Hsp70基因的染色体定位和重复事件,发现Hsp70基因在5个物种的各染色体上分布不均匀,此外从5个物种中共发现12个串联重复事件和110个片段复制事件,表明片段复制事件促进了小麦Hsp70基因家族的扩张;顺式作用元件分析表明,5个物种Hsp70基因的启动子区域存在多种光响应元件、逆境响应元件、激素响应元件以及生长发育调节元件;此外RT-qPCR结果表明,5个物种部分Hsp70基因在不同激素处理和逆境胁迫下具有不同程度的响应,在高温和干旱胁迫下,所选8个Hsp70基因均上调表达。小麦及其祖先物种Hsp70基因的鉴定及其进化过程为进一步研究Hsp70基因在小麦生长发育过程中的功能以及在逆境胁迫下的响应机制提供理论基础。
基金supported by the earmarked fund for the Modern Agroindustry Technology Research System in Shandong Province (No.SDAIT-14)。
文摘To evaluate the combined effect of temperature and cadmium on the molecular responses of heat shock protein 70(hsp70)and P-glycoprotein(P-gp)in mantle,digestive gland and gills of Crassostrea gigas,oysters were exposed to combinations of five temperature levels(10,15,20,25,and 30℃)and 10μg L^(-1)cadmium for 21 days.Oysters were sampled for mRNA quantification by qPCR,and the results showed that the P-gp gene expression changed significantly after treatment at different temperatures and different treatment times.The P-gp gene expression was the highest in the digestive gland.Compared with the control group,the P-gp gene expression in cadmium treatment groups at all the different temperatures were significantly higher than the control group.The control oysters(kept at 10℃during the whole experiment without cadmium)expressed low levels of hsp70,but the groups treated with cadmium displayed somewhat higher levels.The present study demonstrated hsp70 and P-gp played an important role in the detoxification of Cd in C.gigas,and confirmed temperature should be considered for the assessment of Cd-induced toxicity in oysters.
文摘Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with humans to a greater or lesser extent, and can generate adverse effects such as cellular stress when interacting with intra-and extracellular biomolecules. The skin is the first organ in contact with UV radiation, and the stress it generates can be analyzed by the expression of a bioindicator of cellular damage such as Hsp70. Therefore, the objective of the project was: to determine the effect of UVA, UVB and UVC radiation on HaCaT epithelial cells, by analyzing the expression of Hsp70. Materials and methods: HaCaT cells were cultured in vitro, which were irradiated with UVA, UVB and UVC light at different doses, to subsequently determine the degree of Hsp70 expression by Immunodetection by PAGE-SDS and Western Blot. Results: Basal expression of Hsp70 was observed in no irradiated HaCaT cells. When HaCaT cells were irradiated with UVA, UVB, UVC, an increase in this Hsp70 protein was observed. With UVA, a higher degree of expression was observed at a time of 30 minutes of irradiation. With UVB the highest expression shifted to a time of 20 minutes. With UVC, overexpression was observed after 10 minutes. Conclusion: UV radiation generates cellular stress on HaCaT cells, evaluated by the stress bioindicator Hsp70. According to the wavelength of UV radiation, those that have a shorter wavelength have a greater potential for cellular damage, such as UVC.