期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
广义修正HSS迭代法的加速超松弛收敛性分析(英文)
1
作者 程军 《曲靖师范学院学报》 2013年第3期12-15,共4页
通过推广修正艾尔米特和反艾尔米特(MHSS)迭代法,进一步得到求解大型稀疏非艾尔米特正定线性方程组的广义MHSS*迭代法,基于不动点方程,我们还将加速超松弛(AOR)技术运用到了GMHSS迭代法,并证明它的收敛性.数值算例表明,AOR技术能够大大... 通过推广修正艾尔米特和反艾尔米特(MHSS)迭代法,进一步得到求解大型稀疏非艾尔米特正定线性方程组的广义MHSS*迭代法,基于不动点方程,我们还将加速超松弛(AOR)技术运用到了GMHSS迭代法,并证明它的收敛性.数值算例表明,AOR技术能够大大提高GMHSS迭代法的收敛效率. 展开更多
关键词 加速超松弛迭代法 收敛 修正hss迭代法
下载PDF
广义Lyapunov方程的HSS迭代法 被引量:1
2
作者 徐青青 戴华 白中治 《应用数学与计算数学学报》 2015年第4期383-394,共12页
提出了求解广义Lyapunov方程的HSS(Hermitian and skew-Hermitian splitting)迭代法,分析了该方法的收敛性,给出了收敛因子的上界.为了降低HSS迭代法的计算量,提出了求解广义Lyapunov方程的非精确HSS迭代法,并分析其收敛性.数值结果表明... 提出了求解广义Lyapunov方程的HSS(Hermitian and skew-Hermitian splitting)迭代法,分析了该方法的收敛性,给出了收敛因子的上界.为了降低HSS迭代法的计算量,提出了求解广义Lyapunov方程的非精确HSS迭代法,并分析其收敛性.数值结果表明,求解广义Lyapunov方程的HSS迭代法及非精确HSS迭代法是有效的. 展开更多
关键词 广义Lyapunov方程 hss(Hermitian and skew-Hermitian splitting)迭代法 非精确hss迭代法 收敛性
下载PDF
广义修正HSS迭代法的超松弛加速 被引量:2
3
作者 陈芳 蒋耀林 《数值计算与计算机应用》 CSCD 北大核心 2011年第1期41-48,共8页
通过推广修正埃尔米特和反埃尔米特(MHSS)迭代法,我们进一步得到了求解大型稀疏非埃尔米特正定线性方程组的广义MHSS(GMHSS)迭代法.基于不动点方程,我们还将超松弛(SOR)技术运用到了GMHSS迭代法,得到了关于GMHSS迭代法的SOR加速,并分析... 通过推广修正埃尔米特和反埃尔米特(MHSS)迭代法,我们进一步得到了求解大型稀疏非埃尔米特正定线性方程组的广义MHSS(GMHSS)迭代法.基于不动点方程,我们还将超松弛(SOR)技术运用到了GMHSS迭代法,得到了关于GMHSS迭代法的SOR加速,并分析了它的收敛性.数值算例表明,SOR技术能够大大提高加速GMHSS迭代法的收敛效率. 展开更多
关键词 超松弛迭代法 hss迭代法 修正hss迭代法 SOR加速
原文传递
鞍点问题的HSS-GS迭代法与收敛理论 被引量:1
4
作者 陈芳 左军 《北京信息科技大学学报(自然科学版)》 2014年第4期25-29,共5页
为了更好地求解鞍点问题,提出了埃尔米特和反埃尔米特分裂-类高斯赛德尔(HSS-GS)交替迭代法,并分析了其收敛性质。由于鞍点问题是二阶分块矩阵,且最后一块是零矩阵,通过引入新的矩阵,可以得到求解鞍点问题的类高斯赛德尔(GS-like)方法,... 为了更好地求解鞍点问题,提出了埃尔米特和反埃尔米特分裂-类高斯赛德尔(HSS-GS)交替迭代法,并分析了其收敛性质。由于鞍点问题是二阶分块矩阵,且最后一块是零矩阵,通过引入新的矩阵,可以得到求解鞍点问题的类高斯赛德尔(GS-like)方法,并给出了相应的收敛性质。进一步,在GS-like方法和HSS迭代法的基础上,给出了HSS-GS交替迭代方法,并分析了这类算法的收敛性质。数值算例表明,GS-like方法和HSS-GS迭代法都可行,且后者更加有效。 展开更多
关键词 鞍点问题 GS—like方法 hss—GS迭代法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部