Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse ef...Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse effects of S-wave splitting and to improve PS- wave imaging quality, we tested methods for pre-stack migration imaging and anisotropic correction of PS-wave data. We based this on the propagation rules of seismic waves in a horizontal transverse isotropy medium, which is a fractured medium model that reflects likely subsurface conditions in the field. We used the radial (R) and transverse (T) components of PS-wave data to separate the fast and slow S-wave components, after which their propagation moveout was effectively extracted. Meanwhile, corrections for the energies and propagation moveouts of the R and T components were implemented using mathematical rotation. The PS-wave imaging quality was distinctly improved, and we demonstrated the reliability of our methods through numerical simulations. Applying our methods to three-dimensional and three-component seismic field data from the Xinchang-Hexingchang region of the Western Sichuan Depression in China, we obtained high-quality seismic imaging with continuous reflection wave groups, distinct structural features, and specific stratigraphic contact relationships. This study provides an effective and reliable approach for data processing that will improve the exploration of complex, hidden lithologic gas reservoirs.展开更多
A single set of vertically aligned cracks embedded in a purely isotropic background may be con- sidered as a long-wavelength effective transversely iso- tropy (HTI) medium with a horizontal symmetry axis. The crack-...A single set of vertically aligned cracks embedded in a purely isotropic background may be con- sidered as a long-wavelength effective transversely iso- tropy (HTI) medium with a horizontal symmetry axis. The crack-induced HTI anisotropy can be characterized by the weakly anisotropic parameters introduced by Thomsen. The seismic scattering theory can be utilized for the inversion for the anisotropic parameters in weakly aniso- tropic and heterogeneous HTI media. Based on the seismic scattering theory, we first derived the linearized PP- and PS-wave reflection coefficients in terms of P- and S-wave impedances, density as well as three anisotropic parameters in HTI media. Then, we proposed a novel Bayesian Mar- kov chain Monte Carlo inversion method of PP- and PS- wave for six elastic and anisotropic parameters directly. Tests on synthetic azimuthal seismic data contaminated by random errors demonstrated that this method appears more accurate, anti-noise and stable owing to the usage of the constrained PS-wave compared with the standards inver- sion scheme taking only the PP-wave into account.展开更多
Dispersion and attenuation occur while seismic wave travels through cracks filled with fluids,which lead to the anisotropism of seismic azimuthal travel time.Based on latest rock physics models,this study aims to simu...Dispersion and attenuation occur while seismic wave travels through cracks filled with fluids,which lead to the anisotropism of seismic azimuthal travel time.Based on latest rock physics models,this study aims to simulate seismic azimuthal moveout responses(AMR) and analyze the factors affecting this attribute.By numerical modeling,it is found that the AMR is very sensitive to the parameters of the cracks,especially these related to fluid;therefore AMR has the potential to qualitatively or even quantitatively identify cracks.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41574099)the National Key Science and Technology Special Projects(grant No.2016ZX05002004-005)
文摘Anisotropy correction is necessary during the processing of converted PS- wave seismic data to achieve accurate structural imaging, reservoir prediction, and fracture detection. To effectively eliminate the adverse effects of S-wave splitting and to improve PS- wave imaging quality, we tested methods for pre-stack migration imaging and anisotropic correction of PS-wave data. We based this on the propagation rules of seismic waves in a horizontal transverse isotropy medium, which is a fractured medium model that reflects likely subsurface conditions in the field. We used the radial (R) and transverse (T) components of PS-wave data to separate the fast and slow S-wave components, after which their propagation moveout was effectively extracted. Meanwhile, corrections for the energies and propagation moveouts of the R and T components were implemented using mathematical rotation. The PS-wave imaging quality was distinctly improved, and we demonstrated the reliability of our methods through numerical simulations. Applying our methods to three-dimensional and three-component seismic field data from the Xinchang-Hexingchang region of the Western Sichuan Depression in China, we obtained high-quality seismic imaging with continuous reflection wave groups, distinct structural features, and specific stratigraphic contact relationships. This study provides an effective and reliable approach for data processing that will improve the exploration of complex, hidden lithologic gas reservoirs.
基金sponsorship of the National Natural Science Foundation of China (No.41674130)the National Basic Research Program of China (973 Program,Nos.2013CB228604,2014CB239201)+1 种基金the National Oil and Gas Major Projects of China (Nos.2016ZX05027004-001,2016ZX05002005-009)the Fundamental Research Funds for the Central Universities (15CX08002A) for their funding in this research
文摘A single set of vertically aligned cracks embedded in a purely isotropic background may be con- sidered as a long-wavelength effective transversely iso- tropy (HTI) medium with a horizontal symmetry axis. The crack-induced HTI anisotropy can be characterized by the weakly anisotropic parameters introduced by Thomsen. The seismic scattering theory can be utilized for the inversion for the anisotropic parameters in weakly aniso- tropic and heterogeneous HTI media. Based on the seismic scattering theory, we first derived the linearized PP- and PS-wave reflection coefficients in terms of P- and S-wave impedances, density as well as three anisotropic parameters in HTI media. Then, we proposed a novel Bayesian Mar- kov chain Monte Carlo inversion method of PP- and PS- wave for six elastic and anisotropic parameters directly. Tests on synthetic azimuthal seismic data contaminated by random errors demonstrated that this method appears more accurate, anti-noise and stable owing to the usage of the constrained PS-wave compared with the standards inver- sion scheme taking only the PP-wave into account.
基金Supported by Project of National Natural Science Foundation of China(No.40874057)
文摘Dispersion and attenuation occur while seismic wave travels through cracks filled with fluids,which lead to the anisotropism of seismic azimuthal travel time.Based on latest rock physics models,this study aims to simulate seismic azimuthal moveout responses(AMR) and analyze the factors affecting this attribute.By numerical modeling,it is found that the AMR is very sensitive to the parameters of the cracks,especially these related to fluid;therefore AMR has the potential to qualitatively or even quantitatively identify cracks.