Current in vitro assays for the activity of HIV-RT(reverse transcriptase)require radio-labeled or chemically modified nucleotides to detect reaction products.However,these assays are inherently end-point measurements ...Current in vitro assays for the activity of HIV-RT(reverse transcriptase)require radio-labeled or chemically modified nucleotides to detect reaction products.However,these assays are inherently end-point measurements and labor intensive.Here we describe a novel non-radioactive assay based on the principle of pyrosequencing coupledenzyme system to monitor the activity of HIV-RT by indirectly measuring the release of pyrophosphate(PPi),which is generated during nascent strand synthesis.The results show that our assay could monitor HIV-RT activity with high sensitivity and is suitable for rapid highthroughput drug screening targeting anti-HIV therapies due to its high speed and convenience.Moreover,this assay can be used to measure primase activity in an easy and sensitive manner,which suggests that this novel approach could be wildly used to analyze the activity of PPi-generated and ATP-free enzyme reactions.展开更多
In this article, we introduce the system of high throughput screening (HTS). Its role in new drug study and current development is described. The relationship between research achievements of genome study and new type...In this article, we introduce the system of high throughput screening (HTS). Its role in new drug study and current development is described. The relationship between research achievements of genome study and new type screening model of new drugs is emphasized. The personal opinions of current problems about HTS study in China are raised.展开更多
A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activa...A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activators of G551D-CFTR chloride channel from 100000 diverse combinatorial compounds by high throughput screening on a customized Beckman robotic system. A bicyclooctane compound was identified to activate G551D-CFTR chloride channel with high-affinity(K d=1.8 μmol/L). The activity of the bicyclooctane compound is G551D-CFTR-specific, reversible and non-toxic. The G551D-CFTR activator may be useful as a tool to study the mutant G551D-CFTR chloride channel structure and transport properties and as a candidate drug to cure cystic fibrosis caused by G551D-CFTR mutation.展开更多
Xenobiotic drugs and chemicals directly interact with DNA,proteins,or other biomolecules in cells. These direct interactions with molecular targets may trigger a series of downstream effects on metabolic-biochemical a...Xenobiotic drugs and chemicals directly interact with DNA,proteins,or other biomolecules in cells. These direct interactions with molecular targets may trigger a series of downstream effects on metabolic-biochemical and regulatory-signaling networks that can invoke cellular consequences leading to adaptive homeostatic or adverse pathological responses. Regulators for drug and chemicals safety have therefore since long required the testing of toxicity in animal models before drugs and pesticides can enter the market. The US National Research Council of the National Academy of Sciences,in its report,Toxicity Testing in the 21st Century: a Vision and a Strategy [1] ,proposed that toxicity testing should become less reliant on apical endpoints from whole animal tests and eventually rely instead on quantitative,doseresponse models based on information from in vitro assays and in vivo biomarkers,which can be used to screen large numbers of chemicals. The present paper reports about a combination of HTS in vitro assays that can be used to study the potential tumorigenic effect of xenobiotics ( drug targets,environmental chemicals) via a set of"sentinel"genes [2] that are functionally interrelated based on evidence weighted functional linkage network ( FLN ) log-likelihood scores ( Linghu et al [3] ) .展开更多
Traditional Chinese medicine(TCM) has been widely used in China and other Asia countries for thousands of years to treat or prevent human diseases. Chinese herbal medicine, one of the most important components of TCM,...Traditional Chinese medicine(TCM) has been widely used in China and other Asia countries for thousands of years to treat or prevent human diseases. Chinese herbal medicine, one of the most important components of TCM, has unique diversities in chemical components, and thus results in a wide range of biological activities. However, pharmaceutical industry is facing a major challenge to develop a large population of novel natural products and drugs, and considerable efforts have not resulted in highvolume of novel drug discovery and productivity. At present, increasing attention has been paid to Chinese herb medicine modernization in combination with the cutting-age technologies of drug discovery, especially the high throughput selection. High content imaging is an image-based high throughput screening method by using automated microscopy and image analysis software to capture and analyze phenotypes at a large scale to investigate multiple biological features simultaneously in the biological complex. Here, we described the pipeline of the state-of-the-art high content imaging technology, summarized the applications of the high content imaging technology in drug discovery from traditional Chinese herbal medicine, and finally discussed the current challenges and future perspectives for development of high throughput image-based screening technology in novel drug research and discovery.展开更多
An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alp...An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics.展开更多
Neuraminidase (NA) is one of the most important targets to screen the drugs of anti-influenza virus A and B. After virtual screening approaches were applied to a compound database which possesses more than 10000 compo...Neuraminidase (NA) is one of the most important targets to screen the drugs of anti-influenza virus A and B. After virtual screening approaches were applied to a compound database which possesses more than 10000 compound structures, 160 compounds were selected for bioactivity assay, then a High Throughput Screening (HTS) model established for influenza virus NA inhibitors was applied to detect these compounds. Finally, three compounds among them displayed higher inhibitory activities, the range of their IC5o was from 0.1 μmol/L to 3 μmol/L. Their structural scaffolds are novel and different from those of NA inhibitors approved for influenza treatment, and will be useful for the design and research of new NA inhibitors. The result indicated that the combination of virtual screening with HTS was very significant to drug screening and drug discovery.展开更多
基金the National Natural Science Foundation of China(Grant Nos.30221003,30720022)the Ministry of Science and Technology 973 Project(Grant No.2006CB806503)+2 种基金the Ministry of Science and Technology National High Technology Research and Development Program("863"Program)(Grant No.2006AA02A322)the Ministry of Science and Technology International Cooperation Project(Grant No.2006DFB32420)the Chinese Academy of Sciences Knowledge Innovation Project(Grant No.KSCX1-YW-R-05)。
文摘Current in vitro assays for the activity of HIV-RT(reverse transcriptase)require radio-labeled or chemically modified nucleotides to detect reaction products.However,these assays are inherently end-point measurements and labor intensive.Here we describe a novel non-radioactive assay based on the principle of pyrosequencing coupledenzyme system to monitor the activity of HIV-RT by indirectly measuring the release of pyrophosphate(PPi),which is generated during nascent strand synthesis.The results show that our assay could monitor HIV-RT activity with high sensitivity and is suitable for rapid highthroughput drug screening targeting anti-HIV therapies due to its high speed and convenience.Moreover,this assay can be used to measure primase activity in an easy and sensitive manner,which suggests that this novel approach could be wildly used to analyze the activity of PPi-generated and ATP-free enzyme reactions.
文摘In this article, we introduce the system of high throughput screening (HTS). Its role in new drug study and current development is described. The relationship between research achievements of genome study and new type screening model of new drugs is emphasized. The personal opinions of current problems about HTS study in China are raised.
基金the Start- up Fund for Returned Overseas Scholars from Northeast Normal U niversity,National ScienceFund for Distinguished Young Scholars (No. 30 32 5 0 11) ,Distinguished Young Scholars Fund of Jilin Province(No.2 0 0 30 112 ) ,Excellent Young Teachers
文摘A stably transfected CHO cell line coexpressing G551D-CFTR and iodide-sensitive yellow fluorescent protein mutant EYFP-H148Q-I152L was successfully established and used as assay model to identify small-molecule activators of G551D-CFTR chloride channel from 100000 diverse combinatorial compounds by high throughput screening on a customized Beckman robotic system. A bicyclooctane compound was identified to activate G551D-CFTR chloride channel with high-affinity(K d=1.8 μmol/L). The activity of the bicyclooctane compound is G551D-CFTR-specific, reversible and non-toxic. The G551D-CFTR activator may be useful as a tool to study the mutant G551D-CFTR chloride channel structure and transport properties and as a candidate drug to cure cystic fibrosis caused by G551D-CFTR mutation.
文摘Xenobiotic drugs and chemicals directly interact with DNA,proteins,or other biomolecules in cells. These direct interactions with molecular targets may trigger a series of downstream effects on metabolic-biochemical and regulatory-signaling networks that can invoke cellular consequences leading to adaptive homeostatic or adverse pathological responses. Regulators for drug and chemicals safety have therefore since long required the testing of toxicity in animal models before drugs and pesticides can enter the market. The US National Research Council of the National Academy of Sciences,in its report,Toxicity Testing in the 21st Century: a Vision and a Strategy [1] ,proposed that toxicity testing should become less reliant on apical endpoints from whole animal tests and eventually rely instead on quantitative,doseresponse models based on information from in vitro assays and in vivo biomarkers,which can be used to screen large numbers of chemicals. The present paper reports about a combination of HTS in vitro assays that can be used to study the potential tumorigenic effect of xenobiotics ( drug targets,environmental chemicals) via a set of"sentinel"genes [2] that are functionally interrelated based on evidence weighted functional linkage network ( FLN ) log-likelihood scores ( Linghu et al [3] ) .
文摘Traditional Chinese medicine(TCM) has been widely used in China and other Asia countries for thousands of years to treat or prevent human diseases. Chinese herbal medicine, one of the most important components of TCM, has unique diversities in chemical components, and thus results in a wide range of biological activities. However, pharmaceutical industry is facing a major challenge to develop a large population of novel natural products and drugs, and considerable efforts have not resulted in highvolume of novel drug discovery and productivity. At present, increasing attention has been paid to Chinese herb medicine modernization in combination with the cutting-age technologies of drug discovery, especially the high throughput selection. High content imaging is an image-based high throughput screening method by using automated microscopy and image analysis software to capture and analyze phenotypes at a large scale to investigate multiple biological features simultaneously in the biological complex. Here, we described the pipeline of the state-of-the-art high content imaging technology, summarized the applications of the high content imaging technology in drug discovery from traditional Chinese herbal medicine, and finally discussed the current challenges and future perspectives for development of high throughput image-based screening technology in novel drug research and discovery.
基金supported by National Institutes of Health grants AI070827 and CA33266American Cancer Society grant RSG-09-076-01 and the UIC Walter Payton Center GUILD
文摘An estimated 130 million people worldwide are chronically infected with hepatitis C virus (HCV) making it a leading cause of liver disease worldwide. Because the currently available therapy of pegylated interferon-alpha and ribavirin is only effective in a subset of patients, the development of new HCV antivirals is a healthcare imperative. This review discusses the experimental models available for HCV antiviral drug research, recent advances in HCV antiviral drug development, as well as active research being pursued to facilitate development of new HCV-specific therapeutics.
文摘Neuraminidase (NA) is one of the most important targets to screen the drugs of anti-influenza virus A and B. After virtual screening approaches were applied to a compound database which possesses more than 10000 compound structures, 160 compounds were selected for bioactivity assay, then a High Throughput Screening (HTS) model established for influenza virus NA inhibitors was applied to detect these compounds. Finally, three compounds among them displayed higher inhibitory activities, the range of their IC5o was from 0.1 μmol/L to 3 μmol/L. Their structural scaffolds are novel and different from those of NA inhibitors approved for influenza treatment, and will be useful for the design and research of new NA inhibitors. The result indicated that the combination of virtual screening with HTS was very significant to drug screening and drug discovery.