安全DNS协议DNS-over-HTTPS(DoH)的标准化和部署应用,使DoH隧道成为一种新的隐蔽性网络威胁并受到广泛关注。在云网络环境中对大规模DoH业务流量中潜在的隧道流量进行甄别,需要同时兼顾计算效率和准确率。针对当前基于机器学习的DoH隧...安全DNS协议DNS-over-HTTPS(DoH)的标准化和部署应用,使DoH隧道成为一种新的隐蔽性网络威胁并受到广泛关注。在云网络环境中对大规模DoH业务流量中潜在的隧道流量进行甄别,需要同时兼顾计算效率和准确率。针对当前基于机器学习的DoH隧道检测算法特征效率低、计算复杂度高的问题,设计了一组数据包块长度特征并提出了一种基于最大相关最小冗余(max-Relevance and Min-Re-dundancy,mRMR)特征筛选算法和随机森林算法的低维快速DoH隧道检测方法,该方法通过特征筛选选取对DoH隧道检测任务贡献大的特征,并使用随机森林分类器进行DoH隧道检测任务。实验结果表明,该方法在仅使用10维特征的情况下,达到了与使用24~34维特征的其他算法相当的准确率,可有效降低部署应用的计算复杂度,更好地适应大规模DoH业务流量分析的应用场景。展开更多
文摘安全DNS协议DNS-over-HTTPS(DoH)的标准化和部署应用,使DoH隧道成为一种新的隐蔽性网络威胁并受到广泛关注。在云网络环境中对大规模DoH业务流量中潜在的隧道流量进行甄别,需要同时兼顾计算效率和准确率。针对当前基于机器学习的DoH隧道检测算法特征效率低、计算复杂度高的问题,设计了一组数据包块长度特征并提出了一种基于最大相关最小冗余(max-Relevance and Min-Re-dundancy,mRMR)特征筛选算法和随机森林算法的低维快速DoH隧道检测方法,该方法通过特征筛选选取对DoH隧道检测任务贡献大的特征,并使用随机森林分类器进行DoH隧道检测任务。实验结果表明,该方法在仅使用10维特征的情况下,达到了与使用24~34维特征的其他算法相当的准确率,可有效降低部署应用的计算复杂度,更好地适应大规模DoH业务流量分析的应用场景。