This study probed the protective effect of recombinant Lactobacillus plantarum against hydrogen peroxide(H_(2)O_(2))-induced oxidative stress in human umbilical vein endothelial cells(HUVECs).We constructed a new func...This study probed the protective effect of recombinant Lactobacillus plantarum against hydrogen peroxide(H_(2)O_(2))-induced oxidative stress in human umbilical vein endothelial cells(HUVECs).We constructed a new functional L.plantarum(NC8-pSIP409-alr-angiotensin-converting enzyme inhibitory peptide(ACEIP))with a double-gene-labeled non-resistant screen as an expression vector.A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide(MTT)colorimetric assay was carried out to determine the cell viability of HUVEC cells following pretreatment with NC8-pSIP409-alr-ACEIP.Flow cytometry(FCM)was used to determine the apoptosis rate of HUVEC cells.Cysteinyl aspartate specific proteinase(caspase)-3/8/9 activity was also assayed and western blotting was used to determine protein expression of B-cell lymphoma 2(Bcl-2),Bcl-2-associated X protein(Bax),inducible nitric oxide synthase(iNOS),nicotinamide adenine dinucleotide phosphate oxidase 2(gp91phox),angiotensin II(AngII),and angiotensin-converting enzyme 2(ACE2),as well as corresponding indicators of oxidative stress,such as reactive oxygen species(ROS),mitochondrial membrane potential(MMP),malondialdehyde(MDA),and superoxide dismutase(SOD).NC8-pSIP409-alr-ACEIP attenuated H_(2)O_(2)-induced cell death,as determined by the MTT assay.NC8-pSIP409-alr-ACEIP reduced apoptosis of HUVEC cells by FCM.In addition,compared to the positive control,the oxidative stress index of the H_(2)O_(2)-induced HUVEC(Hy-HUVEC),which was pretreated by NC8-pSIP409-alr-ACEIP,iNOS,gp91phox,MDA,and ROS,was decreased obviously;SOD expression level was increased;caspase-3 or-9 was decreased,but caspase-8 did not change;Bcl-2/Bax ratio was increased;permeability changes of mitochondria were inhibited;and loss of transmembrane potential was prevented.Expression of the hypertension-related protein(AngII protein)in HUVEC cells protected by NC8-pSIP409-alr-ACEIP decreased and expression of ACE2 protein increased.These plantarum results suggested that NC8-pSIP409-alr-ACEIP protects against H_(2)O_(2)-induced injury in HUVEC cells.The mechanism for this effect is related to enhancement of antioxidant capacity and apoptosis.展开更多
Martentoxin, a 4,046 Da polypeptide toxin purified from the venom of the scorpion Buthus martensii Karsch, has been demonstrated to block large-conductance Ca2+-activated K+ (BKca) channels; however, its biologica...Martentoxin, a 4,046 Da polypeptide toxin purified from the venom of the scorpion Buthus martensii Karsch, has been demonstrated to block large-conductance Ca2+-activated K+ (BKca) channels; however, its biological roles are still largely unknown. In the present study, we investigated the pharmacological effects of martentoxin on regulating the production of nitric oxide induced by TNF-a in human umbilical vein endothelial cells (HU- VECs). We found that, 1, 10 and 100 ~tmol/L martentoxin decreased nitric oxide production by HUVECs ex- posed to 10 ng/mL TNF for 6, 12 and 24 hours. We further demonstrated that martentoxin inhibited the activity of iNOS and retarded the down-regulation of eNOS mRNA induced by TNF-a. Therefore, martentoxin could be a potential therapeutic agent for vascular diseases.展开更多
Objective To investigate the cellular effects of cigarette smoke extract (CSE) on primarily cultured human umbilical vein endothelial cells (HUVEC). Methods The effects of CSE (5%-20%) and nicotine (10-4 mol/L) on HUV...Objective To investigate the cellular effects of cigarette smoke extract (CSE) on primarily cultured human umbilical vein endothelial cells (HUVEC). Methods The effects of CSE (5%-20%) and nicotine (10-4 mol/L) on HUVEC viability, proliferation, angiogenesis and apoptosis were observed. Results CSE decreased HUVEC survival rate and angiogenesis after 24 h as well as its proliferation after 48 h in a dose-dependent manner. Moreover, CSE induced apoptosis of HUVEC as indicated in condensation of nuclear chromatin and the presence of hypodiploid DNA. HUVEC incubated with CSE for 24 h gave a significant decrease in the expression of Bcl-2 as well as the decline in the Bcl-2/Bax ratio accompanied with the loss of mitochondrial membrane potential and excess cytosolic calcium. Our study also observed that p53 protein level decreased, rather than increased in cells treated with CSE. Nicotine had no discernible inhibitory effects on the above indices of HUVEC. Conclusion Exposure to CSE other than nicotine causes inhibition of viability, proliferation and differentiation of HUVEC. CSE-induced HUVEC injury is mediated in part through accelerated apoptosis but independent of p53 pathway. It appears that mitochondria have played a key role in the apoptosis of HUVEC induced by CSE.展开更多
Vascular endothelial growth factors(VEGFs) respectively bind to each of three receptor tyrosine kinases(RTKs),known as Flt-1,KDR and Flt-4.Since VEGFs and their respective families of receptor tyrosine kinases(VE...Vascular endothelial growth factors(VEGFs) respectively bind to each of three receptor tyrosine kinases(RTKs),known as Flt-1,KDR and Flt-4.Since VEGFs and their respective families of receptor tyrosine kinases(VEGFRs) are critical proteins which can regulate vascular development during angiogenesis,we decided to explore the inhibitory effects of soluble kinase insert domain-containing receptor(sKDR) on endothelial cells and angiogenesis.Total RNA was extracted from human umbilical vein endothelial cells(HUVEC),and cDNA of extracellular domains 1―4 was amplified and recombined with pQE40 vector.After being expressed,affinity purified,renatured and analyzed by Western blot,the sKDR was assayed for its effects on endothelial cells by [3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide](MTT),and on angiogenesis by chick chorioallantoic membrane(CAM) experiment.sKDR cDNA of 1150 bp was obtained via real-time polymerase chain reaction(RT-PCR),and sKDR was expressed by pQE40 procaryotic expression system,purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) analysis with only one band and proved by Western blot.MTT assay demonstrateds that sKDR could inhibit the VEGF-stimulated HUVEC from proliferation,and CAM experiment showed sKDR could block the VEGF-induced angiogenesis.sKDR has the biological activity to bind with VEGF ligands and is a potential target for tumor anti-angiogenesis therapy.展开更多
Objective: To investigate the effect of activated protein C (APC) on inflammatory responses in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS). Methods: The second passage of co...Objective: To investigate the effect of activated protein C (APC) on inflammatory responses in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS). Methods: The second passage of collagenase digested HUVEC was divided into the following groups: serum free medium control group (SFM control), phosphate buffer solution control group (PBS control), LPS group with final concentration of 1 μg/ml (LPS group), APC group with final concentration of 7 μg/ml, Pre-APC group (APC pretreatment for 30 min prior to LPS challenge), and Post-APC group (APC administration 30 min after LPS challenge). Supernatant was harvested at 0, 4, 8, 12 and 24 h after LPS challenge. Interleukin-6 (IL-6) and Interleukin-8 (IL-8) levels were analyzed with ELISA. Cells were harvested at 24 h after LPS challenge, and total RNA was extracted. Mes-senger RNA levels for IL-6 and IL-8 were semi-quantitatively determined by RT-PCR. Results: Compared with control group, IL-6 and IL-8 levels steadily increased 4 to 24 h after LPS stimulation. APC treatment could increase LPS-induced IL-6 and IL-8 production. The mRNA levels of IL-6 and IL-8 exhibited a similar change. Conclusion: APC can further increase the level of IL-6 and IL-8 induced by LPS. The effect of these elevated cytokines is still under investigation.展开更多
OBJECTIVE Angiogenesis therapy has attracted interest as a potential treatment for hepatocellular carcinoma(HCC).In this study,we investigated the anti-proliferative activities and antiangiogenesis effects of saikosap...OBJECTIVE Angiogenesis therapy has attracted interest as a potential treatment for hepatocellular carcinoma(HCC).In this study,we investigated the anti-proliferative activities and antiangiogenesis effects of saikosaponins(SS)-b on hepatocellular carcinoma(HCC)and its regulation on VEGF/ERK/HIF-1 αsignal pathway.METHODS H22 hepatoma-bearing mice model and HepG-2 cells were used to study the anti-tumor and anti-angiogenesis effects of SS-b in vivo and in vitro.Pathological change of tumor tissue was observed by HE staining,the microvascular changes were detected by immunohistochemical method.The effects of SS-b on angiogenesis were examined by using the chick embryo chorioallantoic membrane(CAM)model.The effects of SS-b on proliferation,migration and invasion were investigated by MTT assay,scratch wound healing assay and transwell assay inhuman umbilical vein endothelial cell(HUVEC)and HepG2 cells in vitro.Vascular endothelial growth factor(VEGF),matrix metalloproteinase-2/9(MMP-2/9),hypoxia-inducible factor-1α(HIF-1α)expression and the phosphorylation of extracellular regulated kinase(ERK)were analyzed using RT-PCR and Westernblot.RESULTS SS-b effectively inhibited the tumor growth of H22 mice in vivo.The inhibitory rate of tumor was 49.1%,50.7%,66.1%in SS-b 5,10 and 20 mg·kg-1group respectively.HE staining results showed that SS-b induced tumor necrosis and nuclear dissolution in H22 mice.Moreover,SS-b also reduced the number of microvessels of tumor tissue in H22 mice significantly and suppressed the angiogenesis of CAM induced by b-FGF.SS-b had an obvious inhibitory effect on cell proliferation,migration and invasion of HUVEC cells and HepG-2 cells.These effects were associated with downregulation of the expression of MMP2/9 and suppression of VEGF/ERK/HIF-1αsignaling in H22 mice and Hep-G2 cells.CONCLUSION Our findings showed that SS-b exerts anti-tumor effects by inhibiting tumor angiogenesis via regulating VEGF/ERK/HIF-1α signal pathway in vivo and in vitro.展开更多
Selectins are carbohydrate-binding cell adhesion molecules that play a major role in the initiation of inflammatory responses. Accumulaed evidence has suggested that heparin's anti-inflammatory effects are mainly med...Selectins are carbohydrate-binding cell adhesion molecules that play a major role in the initiation of inflammatory responses. Accumulaed evidence has suggested that heparin's anti-inflammatory effects are mainly mediated by blocking L-or P-selectin-initiated cell adhesion. Recently, we have reported that periodate-oxidized, borohydridereduced heparin (RO-heparln) can inhibit P-selectin-mediated acute inflammation. Here we further examined the effect of RO-heparin on the adhesion of L-selectin-mediated leukocytes to vascular endothelium under flow conditions in vivo and in vitro. The results show that RO-heparin with a low anticoagulant activity can effectively reduce leucocyte roiling on thioglycoUate-induced rat mesenterlc venules and L-selectin-metadiated neutrophil roiling on TNF-α-induced human umbilical vein endothelial cells(HUVECs) under flow conditions. Our findings suggest that the effect of RO-heparin on inflammatory responses is mainly a result of its inhibiting the interaction between P- or L-selectin and its ligands. The findings also suggest that RO-heparin may be useful in preventing inflammation diseases.展开更多
Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angioge...Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells(HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells(HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8(CCK-8) assay. The secretion of pro-inflammatory cytokines(human granulocyte macrophage-colony stimulating factor(GM-CSF), interleukin(IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay(ELISA). The expression of pro-angiogenic factors(vascular endothelial growth factor(VEGF) and basic fibroblast growth factor(b FGF)) mRNA was detected by real-time quantitative polymerase chain reaction(RT-qPCR) assay. Relevant molecules of the nuclear factor-κB(NF-κB) and Janus kinase(JAK)/signal transducer and activator of transcription(STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs(HPMSCs/leptin) exhibited better cell proliferation, migration, and angiogenic potential(expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines(human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.展开更多
Objective Vascular endothelial cells senescence is one of major risk factors for atherosclerotic diseases,which can be induced by endogenous peptides,such as angiotensin Ⅱ(Ang Ⅱ).However,the effect of chronic Ang Ⅱ...Objective Vascular endothelial cells senescence is one of major risk factors for atherosclerotic diseases,which can be induced by endogenous peptides,such as angiotensin Ⅱ(Ang Ⅱ).However,the effect of chronic Ang Ⅱ stimulation on endothelial senescence remains unknown.Therefore,this study aims to investigate the changes in morphology and function of human umbilical vein endothelial cells(HUVECs)in response to the chronic stimulation of Ang Ⅱ.展开更多
Objective:The aim of the study was to investigate the effect of Demethyl bryoanthrathiophene(DBT) on proliferations of human umbilical vein endothelial cells(HUVECs) and human lung adenocarcinoma cell line A549,and an...Objective:The aim of the study was to investigate the effect of Demethyl bryoanthrathiophene(DBT) on proliferations of human umbilical vein endothelial cells(HUVECs) and human lung adenocarcinoma cell line A549,and antiangiogenic effect of DBT on HUVECs in vitro.Methods:MTT assay was used to observe the effect of DBT on proliferations of HUVECs and A549 cells,flat plate scarification assay and tube formation in vitro test were used to observe the impact of DBT on migration and vaso-formed ability of HUVECs.The effects of DBT on apoptosis and cell cycle of HUVECs were calculated by flow cytometry.Results:MTT assay showed that treatment with DBT resulted in strong inhibition to the growth of HUVECs and A549 cells.The inhibition effects of DBT on HUVECs and A549 cells were related to dosage and times of dependency.In different doses of DBT(0.16,0.32 and 0.48 μmol/L) of flat plate scarification for 24 h,inhibition rates of DBT to migration of HUVECs were 14.70%,38.23% and 58.82%,respectively.In dose of DBT from 0.04,0.20 to 0.40 μmol/L for 24 h in tube formation,there were significance differences(P < 0.01) in the decreasing number of angiogenesis and incomplete blood vessel compared with control groups.All results showed that DBT promoted the apoptosis rate of HUVECs,and the increase of concentration of DBT accompanied the acceleration of apoptosis rate.Conclusion:DBT could inhibit the proliferations of HUVECs and A549 cells,and effectively suppress angiogenesis in vitro.展开更多
Endothelial cell death due to increased reactive oxygen species(ROS) may contribute to the initial endothelial injury,which promotes atherosclerotic lesion formation.Piper sarmentosum(PS),a natural product,has been sh...Endothelial cell death due to increased reactive oxygen species(ROS) may contribute to the initial endothelial injury,which promotes atherosclerotic lesion formation.Piper sarmentosum(PS),a natural product,has been shown to have an antioxidant property,which is hypothesized to inhibit production of ROS and prevent cell injury.Thus,the present study was designed to determine the effects of PS on the hydrogen peroxide(H2O2)-induced oxidative cell damage in cultured human umbilical vein endothelial cells(HUVECs).In this experiment,HUVECs were obtained by collagenase perfusion of the large vein in the umbilical cord and cultured in medium M200 supplemented with low serum growth supplementation(LSGS).HUVECs were treated with various concentrations of H2O2(0-1000 μmol/L) and it was observed that 180 μmol/L H2O2 reduced cell viability by 50% as denoted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay.Using the above concentration as the positive control,the H2O2-induced HUVECs were concomitantly treated with various concentrations(100,150,250 and 300 μg/ml) of three different extracts(aqueous,methanol and hexane) of PS.Malondialdehyde(MDA),superoxide dismutase(SOD),catalase(CAT) and glutathione peroxidase(GPX) levels showed a significant increase(P<0.05) in HUVECs compared to the negative control.However,PS extracts showed a protective effect on HUVECs from H2O2-induced cell apoptosis with a significant reduction in MDA,SOD,CAT and GPX levels(P<0.05).Furthermore,PS had exhibited ferric reducing antioxidant power with its high phenolic content.Hence,it was concluded that PS plays a beneficial role in reducing oxidative stress in H2O2-induced HUVECs.展开更多
In order to investigate the in vitro biocompatibility of a novel polyurethane (PU) membrane modified by incorporation of superfine silk-fibroin powder (SFP), which was prepared for small-diameter vascular grafts, ...In order to investigate the in vitro biocompatibility of a novel polyurethane (PU) membrane modified by incorporation of superfine silk-fibroin powder (SFP), which was prepared for small-diameter vascular grafts, with the cultivation of human umbilical vein endothelial cells (HUVECs), PU and SFP were mixed with the ratios of 9:1, 7:3, 5:5, 3:7 (PU:SFP) to make four composite materials. Unmodified PU and polytetrafluoroethylene (PTFE) were added as control groups. CCK-8 assay was used to evaluate the cytotoxicity of these biomaterials. Data were processed using SPSS, and P〈 0.05 was considered to be statistically significant. Adherence and spreading of HUVECs on the surface of specimens was observed using direct contact cultivation. The toxicity ratings of the novel composites were grade 0-1, which is in the acceptable range. In all the experimental groups except control, SFP/PU with ratio of 1:9 had the least cytotoxicity property, and more content of SFP in the composite showed no improvement of the biocompatibility. HUVECs strongly attached to and grew on the surface of the biomaterials, and proliferated rapidly. The proliferation ability increased with increased proportion of SFP; however the cell quantity on the surface of the materials decreased when the proportion of SFP was equal to or larger than that of PU in the composite. It is concluded that this novel material has excellent cellular affinity with no cytotoxicity to HUVECs. Adding SFP gives PU better biocompatibility, while further research on optimum blend ratios is still needed.展开更多
Objective: To provide comprehensive data to understand mechanisms of vascular endothelial cell(VEC) response to hypoxia/re-oxygenation. Methods: Human umbilical vein endothelial cells(HUVECs) were employed to construc...Objective: To provide comprehensive data to understand mechanisms of vascular endothelial cell(VEC) response to hypoxia/re-oxygenation. Methods: Human umbilical vein endothelial cells(HUVECs) were employed to construct hypoxia/re-oxygenation-induced VEC transcriptome profiling. Cells incubated under 5% O2, 5% CO2, and 90% N2 for 3 h followed by 95% air and 5% CO2 for 1 h were used in the hypoxia/re-oxygenation group. Those incubated only under 95% air and 5% CO2 were used in the normoxia control group. Results: By using a well-established microarray chip consisting of 58 339 probes, the study identified 372 differentially expressed genes. While part of the genes are known to be VEC hypoxia/re-oxygenation-related, serving as a good control, a large number of genes related to VEC hypoxia/re-oxygenation were identified for the first time. Through bioinformatic analysis of these genes, we identified that multiple pathways were involved in the reaction. Subsequently, we applied real-time polymerase chain reaction(PCR) and western blot techniques to validate the microarray data. It was found that the expression of apoptosis-related proteins, like pleckstrin homology-like domain family A member 1(PHLDA1), was also consistently up-regulated in the hypoxia/re-oxygenation group. STRING analysis found that significantly differentially expressed genes SLC38A3, SLC5A5, Lnc-SLC36 A4-1, and Lnc-PLEKHJ1-1 may have physical or/and functional protein–protein interactions with PHLDA1. Conclusions: The data from this study have built a foundation to develop many hypotheses to further explore the hypoxia/re-oxygenation mechanisms, an area with great clinical significance for multiple diseases.展开更多
Exposure to fine ambient particulate matter(PM_(2.5)) is known to be associated with cardiovascular disease. To uncover the molecular mechanisms involved in cardiovascular toxicity of PM_(2.5), we investigated alterat...Exposure to fine ambient particulate matter(PM_(2.5)) is known to be associated with cardiovascular disease. To uncover the molecular mechanisms involved in cardiovascular toxicity of PM_(2.5), we investigated alterations in the protein profile of human umbilical vein endothelial cells(HUVECs) treated with PM_(2.5) using two-dimensional electrophoresis in conjunction with mass spectrometry(MS). A total of 31 protein spots were selected as differentially expressed proteins and identified by matrix-assisted laser desorption/ionization-time of flight(MALDI-TOF) MS. The results demonstrated that DNA damage and cell apoptosis are important factors contributing to PM_(2.5)-mediated toxicity in HUVECs. It is further proposed that PM_(2.5) can inhibit superoxide dismutase(SOD) activity and increase reactive oxygen species(ROS) and malonaldehyde(MDA) production in a concentration-dependent manner. Induction of apoptosis and DNA damage through oxidative stress pathways may be one of the key toxicological events occurring in HUVECs under PM_(2.5) stress. These results indicated that the toxic mechanisms of PM_(2.5) on cardiovascular disease are related to endothelial dysfunction.展开更多
Objectives To investigate the effect of telmisartan on human umbilical vein endothelial cells (HUVEC) exposed to high glucose in vitro and the related mechanism. Methods HUVECs were incubated with telmisartan and gl...Objectives To investigate the effect of telmisartan on human umbilical vein endothelial cells (HUVEC) exposed to high glucose in vitro and the related mechanism. Methods HUVECs were incubated with telmisartan and glucose (5 mmol/L, 30 mmot/L) at 0 h, 12 h, 24 h, 36 h, 48 h, respectively. The level of malondialdehyde (MDA) and superoxide dismutase (SOD) in the supernatant of cultured endothelial cells was measured by thiobarbituric acid test and xanthine oxidase test. The expression of PPAR-γ was determined at 24 hour with Western blot technique. Results When the endothelial cells were cultured in high glucose environment, the MDA level was significantly increased, but the SOD activity and the protein expression of PPAR-γ were markedly decreased. However, the high glucose-induced effects were inhibited by telmisartan intervention. Conclusion Telmisartan can decrease oxidative stress and increase PPAR-γ expression of endothelial cells in high glucose environment. (S Chin J Cardio12009 ; 10 (4) : 222 -226)展开更多
AIM: The compound B19 (C21H22O5) is a newly synthesized, mono-carbonyl analog of curcumin that has exhibited potentialantitumor effects. This present study was performed to identify the anti-angiogenic activity of ...AIM: The compound B19 (C21H22O5) is a newly synthesized, mono-carbonyl analog of curcumin that has exhibited potentialantitumor effects. This present study was performed to identify the anti-angiogenic activity of this compound. METHODS AND RESULTS: B19 inhibited migration and tube formation of human umbilical vein endothelial cells, and arrested microvessel outgrowth from rat aortic rings.ln addition, B19 suppressed the neovascularization of chicken chorioallantoic membrane. Mechanistic studies revealed that B19 suppressed the downstream protein kinase activation of vascular endothelial growth factor (VEGF) by decreasing phosphorylated forms of serine/threonine kinase Akt, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase, with or without stimulating vascular endothelial growth factor (VEGF). CONCLUSIONS: B 19 exerted anti-angiogenic activity in vitro and ex vivo, which suggests that it merits further investigation as a promising anticancer angiogenesis compound.展开更多
基金This work is supported the National Key Research and Development Program of China(Nos.2017YFD0501000 and 2017YFD0501200)the National Natural Science Foundation of China(Nos.31672528,31941018,and 32072888)+1 种基金the Science and Technology Project of Jilin Provincial Department of Education(No.JJKH20190942KJ)the Science and Technology Development Program of Jilin Province(Nos.20180201040NY and 20190301042NY),China.
文摘This study probed the protective effect of recombinant Lactobacillus plantarum against hydrogen peroxide(H_(2)O_(2))-induced oxidative stress in human umbilical vein endothelial cells(HUVECs).We constructed a new functional L.plantarum(NC8-pSIP409-alr-angiotensin-converting enzyme inhibitory peptide(ACEIP))with a double-gene-labeled non-resistant screen as an expression vector.A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide(MTT)colorimetric assay was carried out to determine the cell viability of HUVEC cells following pretreatment with NC8-pSIP409-alr-ACEIP.Flow cytometry(FCM)was used to determine the apoptosis rate of HUVEC cells.Cysteinyl aspartate specific proteinase(caspase)-3/8/9 activity was also assayed and western blotting was used to determine protein expression of B-cell lymphoma 2(Bcl-2),Bcl-2-associated X protein(Bax),inducible nitric oxide synthase(iNOS),nicotinamide adenine dinucleotide phosphate oxidase 2(gp91phox),angiotensin II(AngII),and angiotensin-converting enzyme 2(ACE2),as well as corresponding indicators of oxidative stress,such as reactive oxygen species(ROS),mitochondrial membrane potential(MMP),malondialdehyde(MDA),and superoxide dismutase(SOD).NC8-pSIP409-alr-ACEIP attenuated H_(2)O_(2)-induced cell death,as determined by the MTT assay.NC8-pSIP409-alr-ACEIP reduced apoptosis of HUVEC cells by FCM.In addition,compared to the positive control,the oxidative stress index of the H_(2)O_(2)-induced HUVEC(Hy-HUVEC),which was pretreated by NC8-pSIP409-alr-ACEIP,iNOS,gp91phox,MDA,and ROS,was decreased obviously;SOD expression level was increased;caspase-3 or-9 was decreased,but caspase-8 did not change;Bcl-2/Bax ratio was increased;permeability changes of mitochondria were inhibited;and loss of transmembrane potential was prevented.Expression of the hypertension-related protein(AngII protein)in HUVEC cells protected by NC8-pSIP409-alr-ACEIP decreased and expression of ACE2 protein increased.These plantarum results suggested that NC8-pSIP409-alr-ACEIP protects against H_(2)O_(2)-induced injury in HUVEC cells.The mechanism for this effect is related to enhancement of antioxidant capacity and apoptosis.
基金supported by the National Science Foundation of China(No.30271137No.30771831+1 种基金No.81072329)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Martentoxin, a 4,046 Da polypeptide toxin purified from the venom of the scorpion Buthus martensii Karsch, has been demonstrated to block large-conductance Ca2+-activated K+ (BKca) channels; however, its biological roles are still largely unknown. In the present study, we investigated the pharmacological effects of martentoxin on regulating the production of nitric oxide induced by TNF-a in human umbilical vein endothelial cells (HU- VECs). We found that, 1, 10 and 100 ~tmol/L martentoxin decreased nitric oxide production by HUVECs ex- posed to 10 ng/mL TNF for 6, 12 and 24 hours. We further demonstrated that martentoxin inhibited the activity of iNOS and retarded the down-regulation of eNOS mRNA induced by TNF-a. Therefore, martentoxin could be a potential therapeutic agent for vascular diseases.
文摘Objective To investigate the cellular effects of cigarette smoke extract (CSE) on primarily cultured human umbilical vein endothelial cells (HUVEC). Methods The effects of CSE (5%-20%) and nicotine (10-4 mol/L) on HUVEC viability, proliferation, angiogenesis and apoptosis were observed. Results CSE decreased HUVEC survival rate and angiogenesis after 24 h as well as its proliferation after 48 h in a dose-dependent manner. Moreover, CSE induced apoptosis of HUVEC as indicated in condensation of nuclear chromatin and the presence of hypodiploid DNA. HUVEC incubated with CSE for 24 h gave a significant decrease in the expression of Bcl-2 as well as the decline in the Bcl-2/Bax ratio accompanied with the loss of mitochondrial membrane potential and excess cytosolic calcium. Our study also observed that p53 protein level decreased, rather than increased in cells treated with CSE. Nicotine had no discernible inhibitory effects on the above indices of HUVEC. Conclusion Exposure to CSE other than nicotine causes inhibition of viability, proliferation and differentiation of HUVEC. CSE-induced HUVEC injury is mediated in part through accelerated apoptosis but independent of p53 pathway. It appears that mitochondria have played a key role in the apoptosis of HUVEC induced by CSE.
文摘Vascular endothelial growth factors(VEGFs) respectively bind to each of three receptor tyrosine kinases(RTKs),known as Flt-1,KDR and Flt-4.Since VEGFs and their respective families of receptor tyrosine kinases(VEGFRs) are critical proteins which can regulate vascular development during angiogenesis,we decided to explore the inhibitory effects of soluble kinase insert domain-containing receptor(sKDR) on endothelial cells and angiogenesis.Total RNA was extracted from human umbilical vein endothelial cells(HUVEC),and cDNA of extracellular domains 1―4 was amplified and recombined with pQE40 vector.After being expressed,affinity purified,renatured and analyzed by Western blot,the sKDR was assayed for its effects on endothelial cells by [3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide](MTT),and on angiogenesis by chick chorioallantoic membrane(CAM) experiment.sKDR cDNA of 1150 bp was obtained via real-time polymerase chain reaction(RT-PCR),and sKDR was expressed by pQE40 procaryotic expression system,purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) analysis with only one band and proved by Western blot.MTT assay demonstrateds that sKDR could inhibit the VEGF-stimulated HUVEC from proliferation,and CAM experiment showed sKDR could block the VEGF-induced angiogenesis.sKDR has the biological activity to bind with VEGF ligands and is a potential target for tumor anti-angiogenesis therapy.
文摘Objective: To investigate the effect of activated protein C (APC) on inflammatory responses in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS). Methods: The second passage of collagenase digested HUVEC was divided into the following groups: serum free medium control group (SFM control), phosphate buffer solution control group (PBS control), LPS group with final concentration of 1 μg/ml (LPS group), APC group with final concentration of 7 μg/ml, Pre-APC group (APC pretreatment for 30 min prior to LPS challenge), and Post-APC group (APC administration 30 min after LPS challenge). Supernatant was harvested at 0, 4, 8, 12 and 24 h after LPS challenge. Interleukin-6 (IL-6) and Interleukin-8 (IL-8) levels were analyzed with ELISA. Cells were harvested at 24 h after LPS challenge, and total RNA was extracted. Mes-senger RNA levels for IL-6 and IL-8 were semi-quantitatively determined by RT-PCR. Results: Compared with control group, IL-6 and IL-8 levels steadily increased 4 to 24 h after LPS stimulation. APC treatment could increase LPS-induced IL-6 and IL-8 production. The mRNA levels of IL-6 and IL-8 exhibited a similar change. Conclusion: APC can further increase the level of IL-6 and IL-8 induced by LPS. The effect of these elevated cytokines is still under investigation.
基金supported by Scientific and Technology Projects of Henan Province(142102310137)Science and Technology Development Project of Luoyang City(1603001A-3)
文摘OBJECTIVE Angiogenesis therapy has attracted interest as a potential treatment for hepatocellular carcinoma(HCC).In this study,we investigated the anti-proliferative activities and antiangiogenesis effects of saikosaponins(SS)-b on hepatocellular carcinoma(HCC)and its regulation on VEGF/ERK/HIF-1 αsignal pathway.METHODS H22 hepatoma-bearing mice model and HepG-2 cells were used to study the anti-tumor and anti-angiogenesis effects of SS-b in vivo and in vitro.Pathological change of tumor tissue was observed by HE staining,the microvascular changes were detected by immunohistochemical method.The effects of SS-b on angiogenesis were examined by using the chick embryo chorioallantoic membrane(CAM)model.The effects of SS-b on proliferation,migration and invasion were investigated by MTT assay,scratch wound healing assay and transwell assay inhuman umbilical vein endothelial cell(HUVEC)and HepG2 cells in vitro.Vascular endothelial growth factor(VEGF),matrix metalloproteinase-2/9(MMP-2/9),hypoxia-inducible factor-1α(HIF-1α)expression and the phosphorylation of extracellular regulated kinase(ERK)were analyzed using RT-PCR and Westernblot.RESULTS SS-b effectively inhibited the tumor growth of H22 mice in vivo.The inhibitory rate of tumor was 49.1%,50.7%,66.1%in SS-b 5,10 and 20 mg·kg-1group respectively.HE staining results showed that SS-b induced tumor necrosis and nuclear dissolution in H22 mice.Moreover,SS-b also reduced the number of microvessels of tumor tissue in H22 mice significantly and suppressed the angiogenesis of CAM induced by b-FGF.SS-b had an obvious inhibitory effect on cell proliferation,migration and invasion of HUVEC cells and HepG-2 cells.These effects were associated with downregulation of the expression of MMP2/9 and suppression of VEGF/ERK/HIF-1αsignaling in H22 mice and Hep-G2 cells.CONCLUSION Our findings showed that SS-b exerts anti-tumor effects by inhibiting tumor angiogenesis via regulating VEGF/ERK/HIF-1α signal pathway in vivo and in vitro.
文摘Selectins are carbohydrate-binding cell adhesion molecules that play a major role in the initiation of inflammatory responses. Accumulaed evidence has suggested that heparin's anti-inflammatory effects are mainly mediated by blocking L-or P-selectin-initiated cell adhesion. Recently, we have reported that periodate-oxidized, borohydridereduced heparin (RO-heparln) can inhibit P-selectin-mediated acute inflammation. Here we further examined the effect of RO-heparin on the adhesion of L-selectin-mediated leukocytes to vascular endothelium under flow conditions in vivo and in vitro. The results show that RO-heparin with a low anticoagulant activity can effectively reduce leucocyte roiling on thioglycoUate-induced rat mesenterlc venules and L-selectin-metadiated neutrophil roiling on TNF-α-induced human umbilical vein endothelial cells(HUVECs) under flow conditions. Our findings suggest that the effect of RO-heparin on inflammatory responses is mainly a result of its inhibiting the interaction between P- or L-selectin and its ligands. The findings also suggest that RO-heparin may be useful in preventing inflammation diseases.
基金Project supported by the Special Fund for Cooperation of Local Government and College(Schools and Institutes)in Changchun,Jilin Province(No.17DY024),China。
文摘Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells(HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells(HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8(CCK-8) assay. The secretion of pro-inflammatory cytokines(human granulocyte macrophage-colony stimulating factor(GM-CSF), interleukin(IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay(ELISA). The expression of pro-angiogenic factors(vascular endothelial growth factor(VEGF) and basic fibroblast growth factor(b FGF)) mRNA was detected by real-time quantitative polymerase chain reaction(RT-qPCR) assay. Relevant molecules of the nuclear factor-κB(NF-κB) and Janus kinase(JAK)/signal transducer and activator of transcription(STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs(HPMSCs/leptin) exhibited better cell proliferation, migration, and angiogenic potential(expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines(human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.
文摘Objective Vascular endothelial cells senescence is one of major risk factors for atherosclerotic diseases,which can be induced by endogenous peptides,such as angiotensin Ⅱ(Ang Ⅱ).However,the effect of chronic Ang Ⅱ stimulation on endothelial senescence remains unknown.Therefore,this study aims to investigate the changes in morphology and function of human umbilical vein endothelial cells(HUVECs)in response to the chronic stimulation of Ang Ⅱ.
基金Supported by a grant from the National Natural Science Foundation of China (No.30472078)
文摘Objective:The aim of the study was to investigate the effect of Demethyl bryoanthrathiophene(DBT) on proliferations of human umbilical vein endothelial cells(HUVECs) and human lung adenocarcinoma cell line A549,and antiangiogenic effect of DBT on HUVECs in vitro.Methods:MTT assay was used to observe the effect of DBT on proliferations of HUVECs and A549 cells,flat plate scarification assay and tube formation in vitro test were used to observe the impact of DBT on migration and vaso-formed ability of HUVECs.The effects of DBT on apoptosis and cell cycle of HUVECs were calculated by flow cytometry.Results:MTT assay showed that treatment with DBT resulted in strong inhibition to the growth of HUVECs and A549 cells.The inhibition effects of DBT on HUVECs and A549 cells were related to dosage and times of dependency.In different doses of DBT(0.16,0.32 and 0.48 μmol/L) of flat plate scarification for 24 h,inhibition rates of DBT to migration of HUVECs were 14.70%,38.23% and 58.82%,respectively.In dose of DBT from 0.04,0.20 to 0.40 μmol/L for 24 h in tube formation,there were significance differences(P < 0.01) in the decreasing number of angiogenesis and incomplete blood vessel compared with control groups.All results showed that DBT promoted the apoptosis rate of HUVECs,and the increase of concentration of DBT accompanied the acceleration of apoptosis rate.Conclusion:DBT could inhibit the proliferations of HUVECs and A549 cells,and effectively suppress angiogenesis in vitro.
基金Project (Nos UKM-FF-03-FRGS0005-2007 and FF-138-2007) supported by the Ministry of Higher Education and Universiti Kebangsaan Malaysia
文摘Endothelial cell death due to increased reactive oxygen species(ROS) may contribute to the initial endothelial injury,which promotes atherosclerotic lesion formation.Piper sarmentosum(PS),a natural product,has been shown to have an antioxidant property,which is hypothesized to inhibit production of ROS and prevent cell injury.Thus,the present study was designed to determine the effects of PS on the hydrogen peroxide(H2O2)-induced oxidative cell damage in cultured human umbilical vein endothelial cells(HUVECs).In this experiment,HUVECs were obtained by collagenase perfusion of the large vein in the umbilical cord and cultured in medium M200 supplemented with low serum growth supplementation(LSGS).HUVECs were treated with various concentrations of H2O2(0-1000 μmol/L) and it was observed that 180 μmol/L H2O2 reduced cell viability by 50% as denoted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay.Using the above concentration as the positive control,the H2O2-induced HUVECs were concomitantly treated with various concentrations(100,150,250 and 300 μg/ml) of three different extracts(aqueous,methanol and hexane) of PS.Malondialdehyde(MDA),superoxide dismutase(SOD),catalase(CAT) and glutathione peroxidase(GPX) levels showed a significant increase(P<0.05) in HUVECs compared to the negative control.However,PS extracts showed a protective effect on HUVECs from H2O2-induced cell apoptosis with a significant reduction in MDA,SOD,CAT and GPX levels(P<0.05).Furthermore,PS had exhibited ferric reducing antioxidant power with its high phenolic content.Hence,it was concluded that PS plays a beneficial role in reducing oxidative stress in H2O2-induced HUVECs.
文摘In order to investigate the in vitro biocompatibility of a novel polyurethane (PU) membrane modified by incorporation of superfine silk-fibroin powder (SFP), which was prepared for small-diameter vascular grafts, with the cultivation of human umbilical vein endothelial cells (HUVECs), PU and SFP were mixed with the ratios of 9:1, 7:3, 5:5, 3:7 (PU:SFP) to make four composite materials. Unmodified PU and polytetrafluoroethylene (PTFE) were added as control groups. CCK-8 assay was used to evaluate the cytotoxicity of these biomaterials. Data were processed using SPSS, and P〈 0.05 was considered to be statistically significant. Adherence and spreading of HUVECs on the surface of specimens was observed using direct contact cultivation. The toxicity ratings of the novel composites were grade 0-1, which is in the acceptable range. In all the experimental groups except control, SFP/PU with ratio of 1:9 had the least cytotoxicity property, and more content of SFP in the composite showed no improvement of the biocompatibility. HUVECs strongly attached to and grew on the surface of the biomaterials, and proliferated rapidly. The proliferation ability increased with increased proportion of SFP; however the cell quantity on the surface of the materials decreased when the proportion of SFP was equal to or larger than that of PU in the composite. It is concluded that this novel material has excellent cellular affinity with no cytotoxicity to HUVECs. Adding SFP gives PU better biocompatibility, while further research on optimum blend ratios is still needed.
基金Project supported by the National Natural Science Foundation of China(Nos.81801572 and 81272075)the Foundation of Key Discipline Construction of Zhejiang Province for Traditional Chinese Medicine(No.2017-XKA36)+5 种基金the Foundation of Key Research Project of Zhejiang Province for Traditional Chinese Medicine(No.2019ZZ014)the Medical and Health Science Foundation of Zhejiang Province(No.2019327552)the Key Research and Development Program of Zhejiang Province(No.2019C03076)the General Research Program of Zhejiang Provincial Department of Medical and Health(No.2013KYA066)the Opening Foundation of State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases(Nos.2018KF02 and 2019KF06)the Program of Education Department of Zhejiang Province(No.Y201738150),China。
文摘Objective: To provide comprehensive data to understand mechanisms of vascular endothelial cell(VEC) response to hypoxia/re-oxygenation. Methods: Human umbilical vein endothelial cells(HUVECs) were employed to construct hypoxia/re-oxygenation-induced VEC transcriptome profiling. Cells incubated under 5% O2, 5% CO2, and 90% N2 for 3 h followed by 95% air and 5% CO2 for 1 h were used in the hypoxia/re-oxygenation group. Those incubated only under 95% air and 5% CO2 were used in the normoxia control group. Results: By using a well-established microarray chip consisting of 58 339 probes, the study identified 372 differentially expressed genes. While part of the genes are known to be VEC hypoxia/re-oxygenation-related, serving as a good control, a large number of genes related to VEC hypoxia/re-oxygenation were identified for the first time. Through bioinformatic analysis of these genes, we identified that multiple pathways were involved in the reaction. Subsequently, we applied real-time polymerase chain reaction(PCR) and western blot techniques to validate the microarray data. It was found that the expression of apoptosis-related proteins, like pleckstrin homology-like domain family A member 1(PHLDA1), was also consistently up-regulated in the hypoxia/re-oxygenation group. STRING analysis found that significantly differentially expressed genes SLC38A3, SLC5A5, Lnc-SLC36 A4-1, and Lnc-PLEKHJ1-1 may have physical or/and functional protein–protein interactions with PHLDA1. Conclusions: The data from this study have built a foundation to develop many hypotheses to further explore the hypoxia/re-oxygenation mechanisms, an area with great clinical significance for multiple diseases.
基金Project supported by the Medical and Health Science and Technology Fund of Zhejiang Province(No.2016KYB224)the Scientific Research Fund of Zhejiang Chinese Medicine University(No.2015ZG17),China
文摘Exposure to fine ambient particulate matter(PM_(2.5)) is known to be associated with cardiovascular disease. To uncover the molecular mechanisms involved in cardiovascular toxicity of PM_(2.5), we investigated alterations in the protein profile of human umbilical vein endothelial cells(HUVECs) treated with PM_(2.5) using two-dimensional electrophoresis in conjunction with mass spectrometry(MS). A total of 31 protein spots were selected as differentially expressed proteins and identified by matrix-assisted laser desorption/ionization-time of flight(MALDI-TOF) MS. The results demonstrated that DNA damage and cell apoptosis are important factors contributing to PM_(2.5)-mediated toxicity in HUVECs. It is further proposed that PM_(2.5) can inhibit superoxide dismutase(SOD) activity and increase reactive oxygen species(ROS) and malonaldehyde(MDA) production in a concentration-dependent manner. Induction of apoptosis and DNA damage through oxidative stress pathways may be one of the key toxicological events occurring in HUVECs under PM_(2.5) stress. These results indicated that the toxic mechanisms of PM_(2.5) on cardiovascular disease are related to endothelial dysfunction.
文摘Objectives To investigate the effect of telmisartan on human umbilical vein endothelial cells (HUVEC) exposed to high glucose in vitro and the related mechanism. Methods HUVECs were incubated with telmisartan and glucose (5 mmol/L, 30 mmot/L) at 0 h, 12 h, 24 h, 36 h, 48 h, respectively. The level of malondialdehyde (MDA) and superoxide dismutase (SOD) in the supernatant of cultured endothelial cells was measured by thiobarbituric acid test and xanthine oxidase test. The expression of PPAR-γ was determined at 24 hour with Western blot technique. Results When the endothelial cells were cultured in high glucose environment, the MDA level was significantly increased, but the SOD activity and the protein expression of PPAR-γ were markedly decreased. However, the high glucose-induced effects were inhibited by telmisartan intervention. Conclusion Telmisartan can decrease oxidative stress and increase PPAR-γ expression of endothelial cells in high glucose environment. (S Chin J Cardio12009 ; 10 (4) : 222 -226)
基金supported by the National Natural Science Foundation(Nos.81102853,81071841)
文摘AIM: The compound B19 (C21H22O5) is a newly synthesized, mono-carbonyl analog of curcumin that has exhibited potentialantitumor effects. This present study was performed to identify the anti-angiogenic activity of this compound. METHODS AND RESULTS: B19 inhibited migration and tube formation of human umbilical vein endothelial cells, and arrested microvessel outgrowth from rat aortic rings.ln addition, B19 suppressed the neovascularization of chicken chorioallantoic membrane. Mechanistic studies revealed that B19 suppressed the downstream protein kinase activation of vascular endothelial growth factor (VEGF) by decreasing phosphorylated forms of serine/threonine kinase Akt, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinase, with or without stimulating vascular endothelial growth factor (VEGF). CONCLUSIONS: B 19 exerted anti-angiogenic activity in vitro and ex vivo, which suggests that it merits further investigation as a promising anticancer angiogenesis compound.