随着电网换相型高压直流输电(line commutated converter based high voltage direct current, LCC-HVDC)技术的广泛应用,交直流混联电力系统的交互稳定性问题日益突出。首先基于状态空间平均法建立了考虑非线性换相重叠动态过程的LCC...随着电网换相型高压直流输电(line commutated converter based high voltage direct current, LCC-HVDC)技术的广泛应用,交直流混联电力系统的交互稳定性问题日益突出。首先基于状态空间平均法建立了考虑非线性换相重叠动态过程的LCC换流器传递函数模型。为适应愈加复杂的直流输电系统建模,提出利用模块化思想分别建立LCC-HVDC各子系统小信号模型,并推导了能反映交直流系统和换流器之间电气耦合特性的接口矩阵实现子系统连接,从而模块化建立精确且易于扩展的计及控制链路延时和锁相环输出相位波动的双端LCC-HVDC系统改进小信号模型。最后分析了控制系统参数和控制链路延时对系统小干扰稳定性的影响以及失稳模态的主导因素,揭示了双端LCC-HVDC系统交直流混合谐振机理及送受端交互影响具体过程。研究结果可以为系统参数设计、谐振抑制措施提供理论基础。展开更多
风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对...风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。展开更多
基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能...基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能会导致风机WT(wind turbine)的变流器控制难度增大,系统稳定性变差。基于此,提出了一种适用于DR-HVDC连接海上WT变流器的新型电网形成控制方法。该方法采用2个正序控制回路来调节WTs的输出有功功率,并维持海上交流电网的频率和电压,其中第一个控制器可将每台WT的有功功率误差调节为电压角偏差,从而造成系统频率偏差;第二个控制器通过调整WT的交流电压幅值以抵消频率偏差。变流器内部电流控制回路用于限制故障电流,并消除系统中的高频谐振。最后,通过故障穿越、WT功率变化、无功扰动和WTs停机4个方面的电磁暂态仿真,验证了所提控制方法的有效性和优越性。展开更多
Concentrated integration of large scale wind power demands stronger robustness of VSC-HVDC transmission. Based on PCHD (Port Controled Hamiltonian with Dissipation) equation, the PCHD model of voltage source converter...Concentrated integration of large scale wind power demands stronger robustness of VSC-HVDC transmission. Based on PCHD (Port Controled Hamiltonian with Dissipation) equation, the PCHD model of voltage source converter (VSC) in abc frame and d-q rotating frame are built and the strict passivity of VSC is proved. Desired energy function is constructed and used as Lyapunov function by assigning link matrix and damping matrix. Impact from VSC equivalent dc resistance is eliminated by additional damping matrix. The IDA-PB (Interconnection and Damping Assignment Passivity-based) controller is designed based on desired equilibrium point and state variable. With different operation conditions, VSC-HVDC and its control system are simulated by software PSCAD/EMTDC, the results show the proposed control strategy has good performance and strong robustness.展开更多
High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, d...High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, droop control has been widely used. Transmission line loss constitutes an import part of the total power loss in a multi-terminal HVDC scheme. In this paper, the relation between droop controller design and transmission loss has been investigated. Different MTDC layout configurations are compared to examine the effect of droop controller design on the transmission loss.展开更多
在“沙戈荒”地区风电经电网换相高压直流输电(line-commutated-converter based high voltage direct current,LCC-HVDC)外送系统中,采用基于匹配控制的构网型直驱风机(matching control permanent magnet synchronous generator,MC-PM...在“沙戈荒”地区风电经电网换相高压直流输电(line-commutated-converter based high voltage direct current,LCC-HVDC)外送系统中,采用基于匹配控制的构网型直驱风机(matching control permanent magnet synchronous generator,MC-PMSG)可以提升送端电网的稳定性。然而,当MC-PMSG位于LCC-HVDC整流站近区时,系统的次同步振荡(sub-synchronous oscillation,SSO)特性尚未明确。针对上述问题,该文采用模块化建模法建立MC-PMSG经LCC-HVDC送出系统的小信号模型,通过特征值法研究MC-PMSG与LCC-HVDC对系统各SSO模态的参与情况与系统运行方式变化对次同步振荡阻尼特性的影响,通过阻尼重构法分析LCC-HVDC并网对系统振荡风险的影响机理。研究结果表明,系统存在匹配控制型风机主导、LCC-HVDC参与的SSO模态,MC-PMSG与LCC-HVDC间的次同步交互作用为SSO提供负阻尼;当混合型风电场中的MC-PMSG占比增大、MC-PMSG风电场容量增大或短路比减小、LCC-HVDC定电流控制器的比例系数增大、风机网侧换流控制器外环积分系数减小、直流电容增大时,SSO阻尼增大。通过PSCAD/EMTDC电磁暂态仿真证明理论分析结果的有效性。展开更多
In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the outpu...In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.展开更多
Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplie...Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.展开更多
This paper presents the effect of the high voltage direct current (HVDC) transmission system based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency oscillations (LFO) in power...This paper presents the effect of the high voltage direct current (HVDC) transmission system based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency oscillations (LFO) in power system. Also, a novel adaptive neural controller based on neural identifier is proposed for the HVDC which is capable of damping out LFO and sub synchronous oscillations (SSO). For comparison purposes, results of system based damping neural controller are compared with a lead-lag controller based on quantum particle swarm optimization (QPSO). It is shown that implementing adaptive damping controller not only improves the stability of power system but also can overcome drawbacks of conventional compensators with fixed parameters. In order to determine the most effective input of HVDC system to apply supplementary controller signal, analysis based on singular value decomposition is performed. To evaluate the performance of the proposed controller, transient simulations of detailed nonlinear system are considered.展开更多
The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular valu...The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.展开更多
针对电压源型换流器高压直流输电VSC-HVDC(voltage source converter based high-voltage direct current)交流系统中占比较大的5、7、11、13等低次谐波,在比例积分PI(proportional integral)控制的基础上,提出1种dq坐标系下基于矢量比...针对电压源型换流器高压直流输电VSC-HVDC(voltage source converter based high-voltage direct current)交流系统中占比较大的5、7、11、13等低次谐波,在比例积分PI(proportional integral)控制的基础上,提出1种dq坐标系下基于矢量比例积分VPI(vector proportional integral)调节器的选择性谐波电流控制策略。其中,PI用于控制电流误差直流分量,而VPI用于抑制电流误差的倍频波动。与比例积分谐振PIR(proportional integral resonance)调节器不同,VPI含有二阶分子,可在所设谐振频率点处实现控制系统闭环传递函数的理想0°相位延迟,因此其对谐波电流的控制精度优于PIR。利用Simulink软件建立1个2端VSC-HVDC系统,分别对传统PI、PIR及PI并联VPI这3种控制方式下VSC的2侧交流电流进行仿真,通过对比谐波含量,验证VPI谐波抑制性能的优越性。展开更多
文摘随着电网换相型高压直流输电(line commutated converter based high voltage direct current, LCC-HVDC)技术的广泛应用,交直流混联电力系统的交互稳定性问题日益突出。首先基于状态空间平均法建立了考虑非线性换相重叠动态过程的LCC换流器传递函数模型。为适应愈加复杂的直流输电系统建模,提出利用模块化思想分别建立LCC-HVDC各子系统小信号模型,并推导了能反映交直流系统和换流器之间电气耦合特性的接口矩阵实现子系统连接,从而模块化建立精确且易于扩展的计及控制链路延时和锁相环输出相位波动的双端LCC-HVDC系统改进小信号模型。最后分析了控制系统参数和控制链路延时对系统小干扰稳定性的影响以及失稳模态的主导因素,揭示了双端LCC-HVDC系统交直流混合谐振机理及送受端交互影响具体过程。研究结果可以为系统参数设计、谐振抑制措施提供理论基础。
文摘风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。
文摘基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能会导致风机WT(wind turbine)的变流器控制难度增大,系统稳定性变差。基于此,提出了一种适用于DR-HVDC连接海上WT变流器的新型电网形成控制方法。该方法采用2个正序控制回路来调节WTs的输出有功功率,并维持海上交流电网的频率和电压,其中第一个控制器可将每台WT的有功功率误差调节为电压角偏差,从而造成系统频率偏差;第二个控制器通过调整WT的交流电压幅值以抵消频率偏差。变流器内部电流控制回路用于限制故障电流,并消除系统中的高频谐振。最后,通过故障穿越、WT功率变化、无功扰动和WTs停机4个方面的电磁暂态仿真,验证了所提控制方法的有效性和优越性。
文摘Concentrated integration of large scale wind power demands stronger robustness of VSC-HVDC transmission. Based on PCHD (Port Controled Hamiltonian with Dissipation) equation, the PCHD model of voltage source converter (VSC) in abc frame and d-q rotating frame are built and the strict passivity of VSC is proved. Desired energy function is constructed and used as Lyapunov function by assigning link matrix and damping matrix. Impact from VSC equivalent dc resistance is eliminated by additional damping matrix. The IDA-PB (Interconnection and Damping Assignment Passivity-based) controller is designed based on desired equilibrium point and state variable. With different operation conditions, VSC-HVDC and its control system are simulated by software PSCAD/EMTDC, the results show the proposed control strategy has good performance and strong robustness.
文摘High Voltage Direct Current (HVDC) electric power transmission is a promising technology for integrating offshore wind farms and interconnecting power grids in different regions. In order to maintain the DC voltage, droop control has been widely used. Transmission line loss constitutes an import part of the total power loss in a multi-terminal HVDC scheme. In this paper, the relation between droop controller design and transmission loss has been investigated. Different MTDC layout configurations are compared to examine the effect of droop controller design on the transmission loss.
文摘在“沙戈荒”地区风电经电网换相高压直流输电(line-commutated-converter based high voltage direct current,LCC-HVDC)外送系统中,采用基于匹配控制的构网型直驱风机(matching control permanent magnet synchronous generator,MC-PMSG)可以提升送端电网的稳定性。然而,当MC-PMSG位于LCC-HVDC整流站近区时,系统的次同步振荡(sub-synchronous oscillation,SSO)特性尚未明确。针对上述问题,该文采用模块化建模法建立MC-PMSG经LCC-HVDC送出系统的小信号模型,通过特征值法研究MC-PMSG与LCC-HVDC对系统各SSO模态的参与情况与系统运行方式变化对次同步振荡阻尼特性的影响,通过阻尼重构法分析LCC-HVDC并网对系统振荡风险的影响机理。研究结果表明,系统存在匹配控制型风机主导、LCC-HVDC参与的SSO模态,MC-PMSG与LCC-HVDC间的次同步交互作用为SSO提供负阻尼;当混合型风电场中的MC-PMSG占比增大、MC-PMSG风电场容量增大或短路比减小、LCC-HVDC定电流控制器的比例系数增大、风机网侧换流控制器外环积分系数减小、直流电容增大时,SSO阻尼增大。通过PSCAD/EMTDC电磁暂态仿真证明理论分析结果的有效性。
文摘In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.
文摘Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.
文摘This paper presents the effect of the high voltage direct current (HVDC) transmission system based on voltage source converter (VSC) on the sub synchronous resonance (SSR) and low frequency oscillations (LFO) in power system. Also, a novel adaptive neural controller based on neural identifier is proposed for the HVDC which is capable of damping out LFO and sub synchronous oscillations (SSO). For comparison purposes, results of system based damping neural controller are compared with a lead-lag controller based on quantum particle swarm optimization (QPSO). It is shown that implementing adaptive damping controller not only improves the stability of power system but also can overcome drawbacks of conventional compensators with fixed parameters. In order to determine the most effective input of HVDC system to apply supplementary controller signal, analysis based on singular value decomposition is performed. To evaluate the performance of the proposed controller, transient simulations of detailed nonlinear system are considered.
文摘The use of the supplementary controllers of a High Voltage Direct Current (HVDC) based on Voltage Source Converter (VSC) to damp low Frequency oscillations in a weakly connected system is surveyed. Also, singular value decomposition (SVD)-based approach is used to analyze and assess the controllability of the poorly damped electromechanical modes by VSC-HVDC different control channels. The problem of supplementary damping controller based VSC-HVDC system is formulated as an optimization problem according to the time domain-based objective function which is solved using quantum-behaved particle swarm optimization (QPSO). Individual designs of the HVDC controllers using QPSO method are evaluated. The effectiveness of the proposed controllers on damping low frequency oscillations is checked through eigenvalue analysis and non-linear time simulation under various disturbance conditions over a wide range of loading.
文摘针对电压源型换流器高压直流输电VSC-HVDC(voltage source converter based high-voltage direct current)交流系统中占比较大的5、7、11、13等低次谐波,在比例积分PI(proportional integral)控制的基础上,提出1种dq坐标系下基于矢量比例积分VPI(vector proportional integral)调节器的选择性谐波电流控制策略。其中,PI用于控制电流误差直流分量,而VPI用于抑制电流误差的倍频波动。与比例积分谐振PIR(proportional integral resonance)调节器不同,VPI含有二阶分子,可在所设谐振频率点处实现控制系统闭环传递函数的理想0°相位延迟,因此其对谐波电流的控制精度优于PIR。利用Simulink软件建立1个2端VSC-HVDC系统,分别对传统PI、PIR及PI并联VPI这3种控制方式下VSC的2侧交流电流进行仿真,通过对比谐波含量,验证VPI谐波抑制性能的优越性。