The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Bas...The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Based on this,a fault locating system for HVDC transmission lines is developed.The system can support modern double ended and single ended travelling wave princi- ples simultaneously,and it is composed of three different parts:travelling wave data acquisition and processing system,communication network and PC based master station.In the system,the fault generated transients are induced from the ground leads of the over-voltage suppression capacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 kV Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China.Some field operation experiences are summarized,showing that the system has very high reliability and accuracy,and the maximum location error is about 3 km(not more than 0.3%of the total line length). Obviously,the application of the system is successful,and the fault location problem has finally been solved completely since the line operation.展开更多
An analytical method of fault characteristic for the HVDC system based on frequency response characteristics of boundary elements is presented here.The computational formulas of transfer function and input impedance a...An analytical method of fault characteristic for the HVDC system based on frequency response characteristics of boundary elements is presented here.The computational formulas of transfer function and input impedance are deduced using the distributed parameter model of HVDC transmission line,and the amplitude-to-frequency-characteristics of the transfer function and input impedance are analyzed.Based on the amplitude-to-frequency difference between internal and external faults,a non-unit protection method for VSC-HVDC transmission line is presented.Using the current ratio of high-to-low-frequency,this protection method can distinguish internal from external fault.The presented algorithm only uses local-end current,has high operation speed,and is easy to implement.Simulations on a±200 kV VSC-HVDC system are conducted to demonstrate the validity and feasibility of the developed protection method.展开更多
Corona discharge suppression for high-voltage direct-current(HVDC)transmission lines at line terminals such as converter stations is a subject that requires attention.In this paper,a method based on a conductor covere...Corona discharge suppression for high-voltage direct-current(HVDC)transmission lines at line terminals such as converter stations is a subject that requires attention.In this paper,a method based on a conductor covered with dielectric film is proposed and implemented through a bench-scale setup.Compared with the bare conductor,the corona discharge suppression effect of the dielectric-film-covered conductor under positive polarity is studied from the composite field strength and ion current density using a line-plate experimental device.The influences of film thickness and film material on the corona discharge suppression effect are investigated.The charge accumulation and dissipation characteristics of different film materials are also studied.The results show that the conductor covered with dielectric film has excellent ability to inhibit corona discharge.The ground-level composite field strength of the conductor covered with dielectric film is lower than its nominal field strength,and its ion current density is at the nA m^(−2) level.The corona threshold voltage can be promoted by increasing the film thickness,but the ability to inhibit corona discharge becomes weak.The larger the surface electric field strength,the more charge accumulated,but the faster the charge dissipation rate.Compared with polyvinyl chloride film,cross-linked polyethylene film has stronger charge accumulation ability and slower charge dissipation rate,which can better restrain the corona discharge of HVDC transmission lines.展开更多
文摘The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Based on this,a fault locating system for HVDC transmission lines is developed.The system can support modern double ended and single ended travelling wave princi- ples simultaneously,and it is composed of three different parts:travelling wave data acquisition and processing system,communication network and PC based master station.In the system,the fault generated transients are induced from the ground leads of the over-voltage suppression capacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 kV Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China.Some field operation experiences are summarized,showing that the system has very high reliability and accuracy,and the maximum location error is about 3 km(not more than 0.3%of the total line length). Obviously,the application of the system is successful,and the fault location problem has finally been solved completely since the line operation.
基金supported in part by the Science and Technology Project Funds through Grid State Corporation(Grant No.SGSNKYOOKJJS1501564)the National Science Foundation of China(Grant No.51477131).
文摘An analytical method of fault characteristic for the HVDC system based on frequency response characteristics of boundary elements is presented here.The computational formulas of transfer function and input impedance are deduced using the distributed parameter model of HVDC transmission line,and the amplitude-to-frequency-characteristics of the transfer function and input impedance are analyzed.Based on the amplitude-to-frequency difference between internal and external faults,a non-unit protection method for VSC-HVDC transmission line is presented.Using the current ratio of high-to-low-frequency,this protection method can distinguish internal from external fault.The presented algorithm only uses local-end current,has high operation speed,and is easy to implement.Simulations on a±200 kV VSC-HVDC system are conducted to demonstrate the validity and feasibility of the developed protection method.
基金by State Grid Shandong Electric Power Company(52062618001M)。
文摘Corona discharge suppression for high-voltage direct-current(HVDC)transmission lines at line terminals such as converter stations is a subject that requires attention.In this paper,a method based on a conductor covered with dielectric film is proposed and implemented through a bench-scale setup.Compared with the bare conductor,the corona discharge suppression effect of the dielectric-film-covered conductor under positive polarity is studied from the composite field strength and ion current density using a line-plate experimental device.The influences of film thickness and film material on the corona discharge suppression effect are investigated.The charge accumulation and dissipation characteristics of different film materials are also studied.The results show that the conductor covered with dielectric film has excellent ability to inhibit corona discharge.The ground-level composite field strength of the conductor covered with dielectric film is lower than its nominal field strength,and its ion current density is at the nA m^(−2) level.The corona threshold voltage can be promoted by increasing the film thickness,but the ability to inhibit corona discharge becomes weak.The larger the surface electric field strength,the more charge accumulated,but the faster the charge dissipation rate.Compared with polyvinyl chloride film,cross-linked polyethylene film has stronger charge accumulation ability and slower charge dissipation rate,which can better restrain the corona discharge of HVDC transmission lines.