In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is propo...In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is proposed in this paper.Traditional voltage control method is hard to achieve the dynamic performance requirements of the HVDC generation system under a wide speed range,so the nonlinear PI parameter adjustment,load current feedback and speed feedback are added to the voltage and excitation current double loop control.The transfer function of the HVDC generation system is derived,and the relationship between speed,load current and PI parameters is obtained.The PI parameters corresponding to the load at certain speed are used to shorten the adjusting time when the load suddenly changes.The dynamic responses in transient processes are analyzed by experiment.The results illustrate that the WRSM HVDC generator system with this method has better dynamic performance.展开更多
A hybrid of line commutated converters(LCCs)and modular multi-level converters(MMCs)can provide the advantages of both the technologies.However,the commutation failure still exists if the LCC operates as an inverter i...A hybrid of line commutated converters(LCCs)and modular multi-level converters(MMCs)can provide the advantages of both the technologies.However,the commutation failure still exists if the LCC operates as an inverter in a hybrid LCC/MMC system.In this paper,the system behavior during a commutation failure is investigated.Both halfbridge and full-bridge MMCs are considered.Control strategies are examined through simulations conducted in PSCAD/EMTDC.Additionally,commutation failure protection strategies for multi-terminal hybrid LCC/MMC systems with AC and DC circuit breakers are studied.This paper can contribute to the protection design of future hybrid LCC/MMC systems against commutation failures.展开更多
Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined contro...Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method.展开更多
随着电网换相型高压直流输电(line commutated converter based high voltage direct current, LCC-HVDC)技术的广泛应用,交直流混联电力系统的交互稳定性问题日益突出。首先基于状态空间平均法建立了考虑非线性换相重叠动态过程的LCC...随着电网换相型高压直流输电(line commutated converter based high voltage direct current, LCC-HVDC)技术的广泛应用,交直流混联电力系统的交互稳定性问题日益突出。首先基于状态空间平均法建立了考虑非线性换相重叠动态过程的LCC换流器传递函数模型。为适应愈加复杂的直流输电系统建模,提出利用模块化思想分别建立LCC-HVDC各子系统小信号模型,并推导了能反映交直流系统和换流器之间电气耦合特性的接口矩阵实现子系统连接,从而模块化建立精确且易于扩展的计及控制链路延时和锁相环输出相位波动的双端LCC-HVDC系统改进小信号模型。最后分析了控制系统参数和控制链路延时对系统小干扰稳定性的影响以及失稳模态的主导因素,揭示了双端LCC-HVDC系统交直流混合谐振机理及送受端交互影响具体过程。研究结果可以为系统参数设计、谐振抑制措施提供理论基础。展开更多
基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能...基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能会导致风机WT(wind turbine)的变流器控制难度增大,系统稳定性变差。基于此,提出了一种适用于DR-HVDC连接海上WT变流器的新型电网形成控制方法。该方法采用2个正序控制回路来调节WTs的输出有功功率,并维持海上交流电网的频率和电压,其中第一个控制器可将每台WT的有功功率误差调节为电压角偏差,从而造成系统频率偏差;第二个控制器通过调整WT的交流电压幅值以抵消频率偏差。变流器内部电流控制回路用于限制故障电流,并消除系统中的高频谐振。最后,通过故障穿越、WT功率变化、无功扰动和WTs停机4个方面的电磁暂态仿真,验证了所提控制方法的有效性和优越性。展开更多
基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统...基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统易发生振荡失稳现象。首先,建立了直驱风电场经MMC-HVDC并网送端系统的小扰动线性化模型,分析了风场有功输出对系统稳定性的影响。然后,建立了MMC及风机并网变流器交流侧dq阻抗模型,从阻抗角度揭示了送端系统振荡失稳机理。进一步,提出了基于MMC交流电压控制外环q轴附加阻尼的振荡抑制策略,可满足系统满功率范围内的运行稳定性要求。最后,基于全比例模型的仿真结果验证了所提振荡抑制策略的有效性。展开更多
Gezhouba-Nanqiao ±500 kV HVDC project is the first imported HVDC transmission system with advanced technologies in China, which was build in 1989. This paper collected main faults happened in recent years, and ma...Gezhouba-Nanqiao ±500 kV HVDC project is the first imported HVDC transmission system with advanced technologies in China, which was build in 1989. This paper collected main faults happened in recent years, and many faults caused equipment outages have been analyzed. Existing problems are listed in this paper.展开更多
It is an important direction for China's power industry to master the design and the equipment manufacturing core technology of large-capacity HVDC power transmission systems,and to form the sustainable developmen...It is an important direction for China's power industry to master the design and the equipment manufacturing core technology of large-capacity HVDC power transmission systems,and to form the sustainable development capability.展开更多
针对新能源基地经电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)送出系统次/超同步振荡问题,现有研究主要通过新能源侧阻抗重塑设计实现振荡抑制,考虑到实际系统并网台数多、机型...针对新能源基地经电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)送出系统次/超同步振荡问题,现有研究主要通过新能源侧阻抗重塑设计实现振荡抑制,考虑到实际系统并网台数多、机型繁杂、故障穿越性能等因素制约,其设计裕度受到限制。该文通过LCC-HVDC阻抗重塑实现系统次/超同步振荡抑制。首先,提出送端换流站定触发角控制、受端换流站定直流电流控制的LCC-HVDC阻抗重塑控制策略,建立计及阻抗重塑的LCC-HVDC阻抗解析模型,并验证阻抗模型的准确性。然后,对比分析重塑前后阻抗特性变化,阐述阻抗重塑控制策略的作用机理,消除原有送端换流站直流电流环与功率电路重叠效应所产生的负阻尼。进一步,基于LCC-HVDC阻抗重塑,优化新能源并网点系统阻抗特性,提升直驱风机(permanent magnet synchronous generator,PMSG)、双馈风机(doubly-fed induction generator,DFIG)以及光伏(photovoltaic,PV)不同类型新能源基地经LCC-HVDC送出系统稳定裕度,消除系统次/超同步振荡风险。最后,不同类型新能源基地经LCC-HVDC送出系统仿真结果验证了该文提出的基于LCC-HVDC阻抗重塑振荡抑制策略的有效性。展开更多
风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对...风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。展开更多
在弱交流系统下对于附带有STATCOM的电网换相换流器高压直流输电(Line Commutated Converter based High Voltage Direct Current, LCC-HVDC)系统,存在着LCC逆变站与STATCOM之间耦合导致LCC-HVDC系统的稳定裕度下降问题,这会减弱LCC-HVD...在弱交流系统下对于附带有STATCOM的电网换相换流器高压直流输电(Line Commutated Converter based High Voltage Direct Current, LCC-HVDC)系统,存在着LCC逆变站与STATCOM之间耦合导致LCC-HVDC系统的稳定裕度下降问题,这会减弱LCC-HVDC抑制换相失败的能力。此外,HVDC控制环节之中的电压指令电流控制(voltage dependent current order limiter, VDCOL)环节的输出电流指令大幅剧烈波动还有几率会导致HVDC系统在首次换相失败之后发生后续换相失败。针对上述问题提出了一种“改进参考电压”的思想,对STATCOM和VDCOL的参考电压与输入电压分别进行修正。首先在STATCOM原本的参考电压经过一个“虚拟电抗”之后得到一个新的参考电压,通过这个改进参考电压弱化了STATCOM电压外环控制模块与LCC逆变站的耦合,减小了交流系统等效阻抗的大小,提升了系统对干扰的抵抗能力。然后对VDCOL的输入电压进行改进,新的改进输入电压改善了故障后VDCOL输出电流指令的大幅剧烈波动情况。最后通过三个层次的对照试验,验证了所提方法的有效性。展开更多
High-voltage direct current(HVDC)grids require fast and reliable protection of the DC lines.The performance of traditional protection schemes is easily impaired by the limitations of the boundary condition and nonline...High-voltage direct current(HVDC)grids require fast and reliable protection of the DC lines.The performance of traditional protection schemes is easily impaired by the limitations of the boundary condition and nonlinearity from the control of converters.One of the key technologies for flexible HVDC grids is the half-bridge modular multilevel converter(HB-MMC).Considering the high controllability of HB-MMC,this study proposes an active injection protection scheme to improve the reliability and sensitivity of the HVDC grid protection.The HB-MMC is used to inject a sinusoidal characteristic signal,at the specified frequency,into the DC lines.Then,the voltage and current at the specified frequency are extracted using the Prony algorithm to calculate the input impedance,which is used for the identification of internal and external faults.The active injection protection scheme was simulated for various cases in the simulation software Power Systems Computer Aided Design.The simulation results indicate that the proposed protection scheme is highly reliable and can overcome transition resistance.展开更多
Multi-terminal hybrid high-voltage direct current(HVDC)systems have been developed quickly in recent years in power transmission area.However,for voltage-source converter(VSC)stations in hybrid HVDC systems,no direct ...Multi-terminal hybrid high-voltage direct current(HVDC)systems have been developed quickly in recent years in power transmission area.However,for voltage-source converter(VSC)stations in hybrid HVDC systems,no direct current(DC)filters are required.In addition,the DC reactor is also not installed at the line end because the DC fault can be limited by the converter itself.This means that the boundary element at the line end is absent,and the single-ended protections used in line commutated converter(LCC)based HVDC(LCC-HVDC)systems or VSC-HVDC systems cannot distinguish the fault line in multi-terminal hybrid HVDC systems.This paper proposes a novel singleended DC protection strategy suitable for the multi-terminal hybrid HVDC system,which mainly applies the transient information and active injection concept to detect and distinguish the fault line.Compared with the single-ended protections used in LCC-HVDC and VSC-HVDC systems,the proposed protection strategy is not dependent on the line boundary element and is thus suitable for the multiterminal hybrid HVDC system.The corresponding simulation cases based on power systems computer aided design(PSCAD)/electromagnetic transients including DC(EMTDC)are carried out to verify the superiority of the proposed protection.展开更多
The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Bas...The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Based on this,a fault locating system for HVDC transmission lines is developed.The system can support modern double ended and single ended travelling wave princi- ples simultaneously,and it is composed of three different parts:travelling wave data acquisition and processing system,communication network and PC based master station.In the system,the fault generated transients are induced from the ground leads of the over-voltage suppression capacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 kV Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China.Some field operation experiences are summarized,showing that the system has very high reliability and accuracy,and the maximum location error is about 3 km(not more than 0.3%of the total line length). Obviously,the application of the system is successful,and the fault location problem has finally been solved completely since the line operation.展开更多
For the hybrid multi-infeed HVDC system in which the receiving-end grid is a strong AC grid including LCC-HVDC subsystems and multiple VSC-HVDC subsystems,it has higher voltage support capability.However,for weak AC g...For the hybrid multi-infeed HVDC system in which the receiving-end grid is a strong AC grid including LCC-HVDC subsystems and multiple VSC-HVDC subsystems,it has higher voltage support capability.However,for weak AC grid,the voltage support capability of the multi-VSC-HVDC subsystems to the LCC-HVDC subsystem(voltage support capability-mVSCs-LCC)can resist the risk of commutation failure.Based on this consideration,this paper proposes an evaluation index called Dynamic Voltage Support Strength Factor(DVSF)for the hybrid multi-infeed system,and uses this index to qualitatively judge the voltage support capability-mVSCs-LCC in weak AC grid.In addition,the proposed evaluation index can also indirectly judge the ability of the LCC-HVDC subsystem to suppress commutation failure.Firstly,the mathematical model of the power flow of the LCC and VSC networks in the steady-state is analyzed,and the concept of DVSF applied to hybrid multi-infeed system is proposed.Furthermore,the DVSF index is also used to qualitatively judge the voltage support capability-mVSCs-LCC.Secondly,the influence of multiple VSC-HVDC subsystems with different operation strategies on the DVSF is analyzed with reference to the concept of DVSF.Finally,the indicators proposed in this paper are compared with other evaluation indicators through MATLAB simulation software to verify its effectiveness.More importantly,the effects of multi-VSC-HVDC subsystems using different coordinated control strategies on the voltage support capability of the receiving-end LCC-HVDC subsystem are also verified.展开更多
基金supported by funded by"Ye Qisun"Joint Foundation Project supported by the State Key Program of National Natural Science Foundation of China under Award U2141223.
文摘In order to enhance the transient performance of aircraft high voltage DC(HVDC)generation system with wound rotor synchronous machine(WRSM)under a wide speed range,the nonlinear PI multi-loop control strategy is proposed in this paper.Traditional voltage control method is hard to achieve the dynamic performance requirements of the HVDC generation system under a wide speed range,so the nonlinear PI parameter adjustment,load current feedback and speed feedback are added to the voltage and excitation current double loop control.The transfer function of the HVDC generation system is derived,and the relationship between speed,load current and PI parameters is obtained.The PI parameters corresponding to the load at certain speed are used to shorten the adjusting time when the load suddenly changes.The dynamic responses in transient processes are analyzed by experiment.The results illustrate that the WRSM HVDC generator system with this method has better dynamic performance.
基金supported by the Science and Technology Project of the State Grid Corporation of China,HVDC Systems/Grids for Transnational Interconnections(Project number:SGTYHT/16-JS-198).
文摘A hybrid of line commutated converters(LCCs)and modular multi-level converters(MMCs)can provide the advantages of both the technologies.However,the commutation failure still exists if the LCC operates as an inverter in a hybrid LCC/MMC system.In this paper,the system behavior during a commutation failure is investigated.Both halfbridge and full-bridge MMCs are considered.Control strategies are examined through simulations conducted in PSCAD/EMTDC.Additionally,commutation failure protection strategies for multi-terminal hybrid LCC/MMC systems with AC and DC circuit breakers are studied.This paper can contribute to the protection design of future hybrid LCC/MMC systems against commutation failures.
文摘Power sharing among multiterminal high voltage direct current terminals(MT-HVDC)is mainly developed based on a priority or sequential manners,which uses to prevent the problem of overloading due to a predefined controller coefficient.Furthermore,fixed power sharing control also suffers from an inability to identify power availability at a rectification station.There is a need for a controller that ensures an efficient power sharing among the MT-HVDC terminals,prevents the possibility of overloading,and utilizes the available power sharing.A new adaptive wireless control for active power sharing among multiterminal(MT-HVDC)systems,including power availability and power management policy,is proposed in this paper.The proposed control strategy solves these issues and,this proposed controller strategy is a generic method that can be applied for unlimited number of converter stations.The rational of this proposed controller is to increase the system reliability by avoiding the necessity of fast communication links.The test system in this paper consists of four converter stations based on three phase-two AC voltage levels.The proposed control strategy for a multiterminal HVDC system is conducted in the power systems computer aided design/electromagnetic transient design and control(PSCAD/EMTDC)simulation environment.The simulation results significantly show the flexibility and usefulness of the proposed power sharing control provided by the new adaptive wireless method.
文摘随着电网换相型高压直流输电(line commutated converter based high voltage direct current, LCC-HVDC)技术的广泛应用,交直流混联电力系统的交互稳定性问题日益突出。首先基于状态空间平均法建立了考虑非线性换相重叠动态过程的LCC换流器传递函数模型。为适应愈加复杂的直流输电系统建模,提出利用模块化思想分别建立LCC-HVDC各子系统小信号模型,并推导了能反映交直流系统和换流器之间电气耦合特性的接口矩阵实现子系统连接,从而模块化建立精确且易于扩展的计及控制链路延时和锁相环输出相位波动的双端LCC-HVDC系统改进小信号模型。最后分析了控制系统参数和控制链路延时对系统小干扰稳定性的影响以及失稳模态的主导因素,揭示了双端LCC-HVDC系统交直流混合谐振机理及送受端交互影响具体过程。研究结果可以为系统参数设计、谐振抑制措施提供理论基础。
文摘基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能会导致风机WT(wind turbine)的变流器控制难度增大,系统稳定性变差。基于此,提出了一种适用于DR-HVDC连接海上WT变流器的新型电网形成控制方法。该方法采用2个正序控制回路来调节WTs的输出有功功率,并维持海上交流电网的频率和电压,其中第一个控制器可将每台WT的有功功率误差调节为电压角偏差,从而造成系统频率偏差;第二个控制器通过调整WT的交流电压幅值以抵消频率偏差。变流器内部电流控制回路用于限制故障电流,并消除系统中的高频谐振。最后,通过故障穿越、WT功率变化、无功扰动和WTs停机4个方面的电磁暂态仿真,验证了所提控制方法的有效性和优越性。
文摘基于模块化多电平换流器MMC(modular multilevel converter)的高压直流输电HVDC(high voltage direct current transmission)因具有无源网络支撑等优势而被广泛应用于大容量新能源外送消纳。受电力电子设备交互作用等因素影响,送端系统易发生振荡失稳现象。首先,建立了直驱风电场经MMC-HVDC并网送端系统的小扰动线性化模型,分析了风场有功输出对系统稳定性的影响。然后,建立了MMC及风机并网变流器交流侧dq阻抗模型,从阻抗角度揭示了送端系统振荡失稳机理。进一步,提出了基于MMC交流电压控制外环q轴附加阻尼的振荡抑制策略,可满足系统满功率范围内的运行稳定性要求。最后,基于全比例模型的仿真结果验证了所提振荡抑制策略的有效性。
文摘Gezhouba-Nanqiao ±500 kV HVDC project is the first imported HVDC transmission system with advanced technologies in China, which was build in 1989. This paper collected main faults happened in recent years, and many faults caused equipment outages have been analyzed. Existing problems are listed in this paper.
文摘It is an important direction for China's power industry to master the design and the equipment manufacturing core technology of large-capacity HVDC power transmission systems,and to form the sustainable development capability.
文摘针对新能源基地经电网换相换流器型高压直流(line commutated converter-based high voltage direct current,LCC-HVDC)送出系统次/超同步振荡问题,现有研究主要通过新能源侧阻抗重塑设计实现振荡抑制,考虑到实际系统并网台数多、机型繁杂、故障穿越性能等因素制约,其设计裕度受到限制。该文通过LCC-HVDC阻抗重塑实现系统次/超同步振荡抑制。首先,提出送端换流站定触发角控制、受端换流站定直流电流控制的LCC-HVDC阻抗重塑控制策略,建立计及阻抗重塑的LCC-HVDC阻抗解析模型,并验证阻抗模型的准确性。然后,对比分析重塑前后阻抗特性变化,阐述阻抗重塑控制策略的作用机理,消除原有送端换流站直流电流环与功率电路重叠效应所产生的负阻尼。进一步,基于LCC-HVDC阻抗重塑,优化新能源并网点系统阻抗特性,提升直驱风机(permanent magnet synchronous generator,PMSG)、双馈风机(doubly-fed induction generator,DFIG)以及光伏(photovoltaic,PV)不同类型新能源基地经LCC-HVDC送出系统稳定裕度,消除系统次/超同步振荡风险。最后,不同类型新能源基地经LCC-HVDC送出系统仿真结果验证了该文提出的基于LCC-HVDC阻抗重塑振荡抑制策略的有效性。
文摘风电的大规模并网导致系统等效惯量下降、不确定性增加,给电力系统的负荷频率控制(loadfrequency control,LFC)带来新的挑战。考虑到柔性直流输电系统(voltage source converter based high voltage DC,VSC-HVDC)具有的潜在调频能力,对此展开研究,针对风电场经VSC-HVDC并网的情形提出了一种虚拟同步发电机(virtual synchronous generator,VSG)变参数负荷频率控制策略。首先,在风电场经VSC-HVDC并网的LFC模型及拓扑结构分析基础上,为了提高VSC-HVDC的可控性,对换流器的控制环节进行了VSG控制方法的设计;然后,对VSG控制参数与频率变化的关联性进行分析,并基于分数阶梯度下降法(fractional-order gradient descent method,FOGDM),利用频率的分数阶导数提取频率深层变化特征,以优化VSG控制参数;在此基础上,考虑到系统的不确定性,设计触发机制对VSG变参数优化模式进行调整,以降低VSG参数的变换频次,提高系统频率控制的针对性。仿真结果表明:所提控制方法能有效改善电网负荷频率控制效果,具有良好的适应性。
文摘在弱交流系统下对于附带有STATCOM的电网换相换流器高压直流输电(Line Commutated Converter based High Voltage Direct Current, LCC-HVDC)系统,存在着LCC逆变站与STATCOM之间耦合导致LCC-HVDC系统的稳定裕度下降问题,这会减弱LCC-HVDC抑制换相失败的能力。此外,HVDC控制环节之中的电压指令电流控制(voltage dependent current order limiter, VDCOL)环节的输出电流指令大幅剧烈波动还有几率会导致HVDC系统在首次换相失败之后发生后续换相失败。针对上述问题提出了一种“改进参考电压”的思想,对STATCOM和VDCOL的参考电压与输入电压分别进行修正。首先在STATCOM原本的参考电压经过一个“虚拟电抗”之后得到一个新的参考电压,通过这个改进参考电压弱化了STATCOM电压外环控制模块与LCC逆变站的耦合,减小了交流系统等效阻抗的大小,提升了系统对干扰的抵抗能力。然后对VDCOL的输入电压进行改进,新的改进输入电压改善了故障后VDCOL输出电流指令的大幅剧烈波动情况。最后通过三个层次的对照试验,验证了所提方法的有效性。
基金supported by the Fundamental Research Funds for the Central Universities(No.2020YJS169)The National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U2066210).
文摘High-voltage direct current(HVDC)grids require fast and reliable protection of the DC lines.The performance of traditional protection schemes is easily impaired by the limitations of the boundary condition and nonlinearity from the control of converters.One of the key technologies for flexible HVDC grids is the half-bridge modular multilevel converter(HB-MMC).Considering the high controllability of HB-MMC,this study proposes an active injection protection scheme to improve the reliability and sensitivity of the HVDC grid protection.The HB-MMC is used to inject a sinusoidal characteristic signal,at the specified frequency,into the DC lines.Then,the voltage and current at the specified frequency are extracted using the Prony algorithm to calculate the input impedance,which is used for the identification of internal and external faults.The active injection protection scheme was simulated for various cases in the simulation software Power Systems Computer Aided Design.The simulation results indicate that the proposed protection scheme is highly reliable and can overcome transition resistance.
文摘Multi-terminal hybrid high-voltage direct current(HVDC)systems have been developed quickly in recent years in power transmission area.However,for voltage-source converter(VSC)stations in hybrid HVDC systems,no direct current(DC)filters are required.In addition,the DC reactor is also not installed at the line end because the DC fault can be limited by the converter itself.This means that the boundary element at the line end is absent,and the single-ended protections used in line commutated converter(LCC)based HVDC(LCC-HVDC)systems or VSC-HVDC systems cannot distinguish the fault line in multi-terminal hybrid HVDC systems.This paper proposes a novel singleended DC protection strategy suitable for the multi-terminal hybrid HVDC system,which mainly applies the transient information and active injection concept to detect and distinguish the fault line.Compared with the single-ended protections used in LCC-HVDC and VSC-HVDC systems,the proposed protection strategy is not dependent on the line boundary element and is thus suitable for the multiterminal hybrid HVDC system.The corresponding simulation cases based on power systems computer aided design(PSCAD)/electromagnetic transients including DC(EMTDC)are carried out to verify the superiority of the proposed protection.
文摘The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Based on this,a fault locating system for HVDC transmission lines is developed.The system can support modern double ended and single ended travelling wave princi- ples simultaneously,and it is composed of three different parts:travelling wave data acquisition and processing system,communication network and PC based master station.In the system,the fault generated transients are induced from the ground leads of the over-voltage suppression capacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 kV Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China.Some field operation experiences are summarized,showing that the system has very high reliability and accuracy,and the maximum location error is about 3 km(not more than 0.3%of the total line length). Obviously,the application of the system is successful,and the fault location problem has finally been solved completely since the line operation.
基金supported by the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U2066210).
文摘For the hybrid multi-infeed HVDC system in which the receiving-end grid is a strong AC grid including LCC-HVDC subsystems and multiple VSC-HVDC subsystems,it has higher voltage support capability.However,for weak AC grid,the voltage support capability of the multi-VSC-HVDC subsystems to the LCC-HVDC subsystem(voltage support capability-mVSCs-LCC)can resist the risk of commutation failure.Based on this consideration,this paper proposes an evaluation index called Dynamic Voltage Support Strength Factor(DVSF)for the hybrid multi-infeed system,and uses this index to qualitatively judge the voltage support capability-mVSCs-LCC in weak AC grid.In addition,the proposed evaluation index can also indirectly judge the ability of the LCC-HVDC subsystem to suppress commutation failure.Firstly,the mathematical model of the power flow of the LCC and VSC networks in the steady-state is analyzed,and the concept of DVSF applied to hybrid multi-infeed system is proposed.Furthermore,the DVSF index is also used to qualitatively judge the voltage support capability-mVSCs-LCC.Secondly,the influence of multiple VSC-HVDC subsystems with different operation strategies on the DVSF is analyzed with reference to the concept of DVSF.Finally,the indicators proposed in this paper are compared with other evaluation indicators through MATLAB simulation software to verify its effectiveness.More importantly,the effects of multi-VSC-HVDC subsystems using different coordinated control strategies on the voltage support capability of the receiving-end LCC-HVDC subsystem are also verified.