In recent years, a large number of high voltage direct current(HVDC) transmission projects have been connected to AC systems. This has started to have an impact on AC/DC hybrid power grids, particularly receiving term...In recent years, a large number of high voltage direct current(HVDC) transmission projects have been connected to AC systems. This has started to have an impact on AC/DC hybrid power grids, particularly receiving terminal power grids. An HVDC system is a large-scale power electronic integrated nonlinear system, and it includes a primary system and a control and protection system. Hence, the precision and degree of detail of HVDC systems directly affect the actual effect of simulation. In recent years, in the case of the normal operation and failure of AC power grids, the abnormal fluctuation and even locking of HVDC systems caused by the inappropriate strategies of the control and protection system component have strongly affected power grids. This has significantly affected the safety and stability of receiving power grids and normal operation. In this study, the actual engineering HVDC control logic provided by a manufacturer is analyzed and simulated based on the user defined component library of the ADPSS electromagnetic transient calculation program, and an HVDC control model based on an actual system is established. The accuracy of the DC control custom model based on ADPSS is verified through the simulation of an actual power grid.展开更多
The intense application of Voltage Source Converter based HVDC interconnections and grids will result in a hybrid AC-HVDC-system. The operation of such a system becomes complex regarding system security and system ope...The intense application of Voltage Source Converter based HVDC interconnections and grids will result in a hybrid AC-HVDC-system. The operation of such a system becomes complex regarding system security and system operation. This paper describes major challenges and proposes potential solutions, including a combined security assessment, preventive optimization and curative actions. A coordination of both systems enables an efficient application of existing transport capacity.展开更多
HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the sys...HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the system performance. Generally, PSS (Power System Stabilizer) is known as a simple concept, easy to perform, and computationally effective to enhance damping of power system oscillations through excitation control of synchronous generator. This paper examines the effectiveness of the PSS to enhance the dynamic performance of AC-DC power systems and to compensate the negative damping of HVDC system. The dynamic performance is evaluated by examining the system response to various disturbances. In order to ensure the reliability of the simulation test results as well as the performance of the PSS, detailed HVDC modeling is adopted using SimPowerSystems toolbox in the MATLAB, and some important conclusions are drawn.展开更多
This paper deals with the operation and performance of VSC (voltage source converter) based HVDC (high voltage direct current) interconnecting two extremely weak AC networks, the experience of Caprivilink project....This paper deals with the operation and performance of VSC (voltage source converter) based HVDC (high voltage direct current) interconnecting two extremely weak AC networks, the experience of Caprivilink project. It is shown in the paper that the HVDC converter automatically provides the supreme voltage and frequency stabilizing function when a critical situation is detected, no matter the disturbances appeared in sending end or receiving end AC networks. This supreme voltage and frequency stabilizing function makes it possible to avoid the blackout even if all the generators are tripped under an extra-ordinary worst contingency. By plots of recorded transients, the paper will show how the eventual blackouts are avoided.展开更多
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of...Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.展开更多
模块化多电平电压源换流器高压直流输电(modular multilevel converter high voltage direct current,MMC-HVDC)技术是一种新型的电压源换流器直流输电技术。计及交流系统与换流站交换功率的数学关系,应用图解法分析了交流电网强度对MMC...模块化多电平电压源换流器高压直流输电(modular multilevel converter high voltage direct current,MMC-HVDC)技术是一种新型的电压源换流器直流输电技术。计及交流系统与换流站交换功率的数学关系,应用图解法分析了交流电网强度对MMC-HVDC系统稳态特性的影响,同时分析了接入强、弱交流电网的直流系统在不同控制方式下设定值改变时的暂态特性。结果表明功率圆的大小及其相对位置可以直观地反映交流电网的强弱,以及控制方式对MMC-HVDC系统运行特性的影响。最后PSCAD电磁暂态仿真验证了上述结论的正确性。展开更多
小水电群富集的地区电网与主网的交流联络较弱时,容易引起系统低频振荡问题。用电压源换流器型直流输电系统(voltage source converter based high voltage direct current transmission,VSC-HVDC)异步联接小水电群电网与主网的方式可...小水电群富集的地区电网与主网的交流联络较弱时,容易引起系统低频振荡问题。用电压源换流器型直流输电系统(voltage source converter based high voltage direct current transmission,VSC-HVDC)异步联接小水电群电网与主网的方式可消除小水电群引起的低频振荡问题。但小水电群电网属于弱交流系统,此场景下VSC-HVDC有必要参与弱交流系统的电压和频率控制。该文设计了一种改善交流系统暂态稳定性的VSC-HVDC交流电压–频率协调控制策略,该策略的首要控制目标是保证VSC-HVDC设备的安全,第二控制目标是提高交流系统的电压稳定性,第三控制目标是提高交流系统的频率稳定性。设计的协调控制器结构能够确保暂态过程中多个控制目标按照优先级顺序实现。以云南电网的实例分析表明:VSC-HVDC异步联网方案能够有效提高系统的小扰动稳定性水平;VSC-HVDC交流电压–频率协调控制策略能够改善交流系统的暂态稳定性。展开更多
基于电压源型换流器的高压直流输电(voltage sourced converter based HVDC,VSC-HVDC)是一种以电压源换流器、自关断器件为基础的高压直流输电技术,其换流阀价格昂贵,需要进行必要合理的保护来保证换流阀的安全运行。内部交流母线故障...基于电压源型换流器的高压直流输电(voltage sourced converter based HVDC,VSC-HVDC)是一种以电压源换流器、自关断器件为基础的高压直流输电技术,其换流阀价格昂贵,需要进行必要合理的保护来保证换流阀的安全运行。内部交流母线故障是换流站内部一种严重的故障形式,因此,有必要对该故障进行分析从而进行保护设计。分析了内部交流母线故障的故障机制,同时针对故障换流站不同控制方式、不同运行模式下,非故障站的动作配合进行了深入的研究。通过在PSCAD/EMTDC中建立相应的电磁暂态模型,对内部交流母线故障进行了详细的模拟,给出了分析验证。结合不同应用下的系统运行要求,提出了故障后相应的两站保护动作配合要求。展开更多
为提高风电场交直流混合输电并网的系统性能,提出一种更加灵活的电压源换流器高压直流(voltage source converter based high voltage direct current,VSC-HVDC)控制策略。对于风电场侧电压源换流器,设计了一种新的交流电压–功角控制...为提高风电场交直流混合输电并网的系统性能,提出一种更加灵活的电压源换流器高压直流(voltage source converter based high voltage direct current,VSC-HVDC)控制策略。对于风电场侧电压源换流器,设计了一种新的交流电压–功角控制方法。对于交直流混合输电模式,该方法通过调节风电场交流母线电压与电压源换流器输出电压间的功角来实现定有功功率控制。对于纯柔性直流输电模式,风电场交流母线电压自动被调节为具有恒幅恒频的交流电压,实现了对波动风电的同步输送。该方法中输电模式的变化无需切换控制;另外,通过附加电流高通滤波器增强了对系统谐振的阻尼作用。对电网侧电压源换流器,采用一种新的直接电流矢量控制,使直流电压稳定在参考值上。运用PSCAD/EMTDC仿真软件对分别接入笼型感应发电机(squirrel cage induction generator,SCIG)风电场和双馈感应发电机(doubly fed induction generator,DFIG)风电场的交直流混合输电系统建模仿真。一系列运行条件下的仿真结果验证了控制方法的有效性与可行性。展开更多
为揭示具有新型拓扑结构的基于模块化多电平换流器直流输电系统MMC-HVDC(modular multilevel converter high voltage direct current)的电磁暂态特性,对该系统进行典型扰动暂态响应的特性分析根据MMC拓扑结构,推导了交流电网不平衡时的...为揭示具有新型拓扑结构的基于模块化多电平换流器直流输电系统MMC-HVDC(modular multilevel converter high voltage direct current)的电磁暂态特性,对该系统进行典型扰动暂态响应的特性分析根据MMC拓扑结构,推导了交流电网不平衡时的MMC交流侧电磁暂态模型,并基于模型设计了正、负序双内环电流控制和外环功率控制的控制策略。同时,对MMC-HVDC在各种典型扰动下的暂态响应特性进行了详细的仿真分析,仿真结果表明所设计的控制策略的正确性。MMC-HVDC在遭受各种典型扰动时具有良好的暂态响应特性,并能稳定、充裕地运行。展开更多
基金supported by National Key Research and Development Program of China-High performance analysis and situational awareness technology for interconnected power grids
文摘In recent years, a large number of high voltage direct current(HVDC) transmission projects have been connected to AC systems. This has started to have an impact on AC/DC hybrid power grids, particularly receiving terminal power grids. An HVDC system is a large-scale power electronic integrated nonlinear system, and it includes a primary system and a control and protection system. Hence, the precision and degree of detail of HVDC systems directly affect the actual effect of simulation. In recent years, in the case of the normal operation and failure of AC power grids, the abnormal fluctuation and even locking of HVDC systems caused by the inappropriate strategies of the control and protection system component have strongly affected power grids. This has significantly affected the safety and stability of receiving power grids and normal operation. In this study, the actual engineering HVDC control logic provided by a manufacturer is analyzed and simulated based on the user defined component library of the ADPSS electromagnetic transient calculation program, and an HVDC control model based on an actual system is established. The accuracy of the DC control custom model based on ADPSS is verified through the simulation of an actual power grid.
文摘The intense application of Voltage Source Converter based HVDC interconnections and grids will result in a hybrid AC-HVDC-system. The operation of such a system becomes complex regarding system security and system operation. This paper describes major challenges and proposes potential solutions, including a combined security assessment, preventive optimization and curative actions. A coordination of both systems enables an efficient application of existing transport capacity.
文摘HVDC (High Voltage Direct Current) systems are increasingly being applied to improve power system operation and controllability. However, inappropriate setting of HVDC controller may have a detriment effect on the system performance. Generally, PSS (Power System Stabilizer) is known as a simple concept, easy to perform, and computationally effective to enhance damping of power system oscillations through excitation control of synchronous generator. This paper examines the effectiveness of the PSS to enhance the dynamic performance of AC-DC power systems and to compensate the negative damping of HVDC system. The dynamic performance is evaluated by examining the system response to various disturbances. In order to ensure the reliability of the simulation test results as well as the performance of the PSS, detailed HVDC modeling is adopted using SimPowerSystems toolbox in the MATLAB, and some important conclusions are drawn.
文摘This paper deals with the operation and performance of VSC (voltage source converter) based HVDC (high voltage direct current) interconnecting two extremely weak AC networks, the experience of Caprivilink project. It is shown in the paper that the HVDC converter automatically provides the supreme voltage and frequency stabilizing function when a critical situation is detected, no matter the disturbances appeared in sending end or receiving end AC networks. This supreme voltage and frequency stabilizing function makes it possible to avoid the blackout even if all the generators are tripped under an extra-ordinary worst contingency. By plots of recorded transients, the paper will show how the eventual blackouts are avoided.
文摘Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.
文摘模块化多电平电压源换流器高压直流输电(modular multilevel converter high voltage direct current,MMC-HVDC)技术是一种新型的电压源换流器直流输电技术。计及交流系统与换流站交换功率的数学关系,应用图解法分析了交流电网强度对MMC-HVDC系统稳态特性的影响,同时分析了接入强、弱交流电网的直流系统在不同控制方式下设定值改变时的暂态特性。结果表明功率圆的大小及其相对位置可以直观地反映交流电网的强弱,以及控制方式对MMC-HVDC系统运行特性的影响。最后PSCAD电磁暂态仿真验证了上述结论的正确性。
文摘小水电群富集的地区电网与主网的交流联络较弱时,容易引起系统低频振荡问题。用电压源换流器型直流输电系统(voltage source converter based high voltage direct current transmission,VSC-HVDC)异步联接小水电群电网与主网的方式可消除小水电群引起的低频振荡问题。但小水电群电网属于弱交流系统,此场景下VSC-HVDC有必要参与弱交流系统的电压和频率控制。该文设计了一种改善交流系统暂态稳定性的VSC-HVDC交流电压–频率协调控制策略,该策略的首要控制目标是保证VSC-HVDC设备的安全,第二控制目标是提高交流系统的电压稳定性,第三控制目标是提高交流系统的频率稳定性。设计的协调控制器结构能够确保暂态过程中多个控制目标按照优先级顺序实现。以云南电网的实例分析表明:VSC-HVDC异步联网方案能够有效提高系统的小扰动稳定性水平;VSC-HVDC交流电压–频率协调控制策略能够改善交流系统的暂态稳定性。
文摘基于电压源型换流器的高压直流输电(voltage sourced converter based HVDC,VSC-HVDC)是一种以电压源换流器、自关断器件为基础的高压直流输电技术,其换流阀价格昂贵,需要进行必要合理的保护来保证换流阀的安全运行。内部交流母线故障是换流站内部一种严重的故障形式,因此,有必要对该故障进行分析从而进行保护设计。分析了内部交流母线故障的故障机制,同时针对故障换流站不同控制方式、不同运行模式下,非故障站的动作配合进行了深入的研究。通过在PSCAD/EMTDC中建立相应的电磁暂态模型,对内部交流母线故障进行了详细的模拟,给出了分析验证。结合不同应用下的系统运行要求,提出了故障后相应的两站保护动作配合要求。
文摘为提高风电场交直流混合输电并网的系统性能,提出一种更加灵活的电压源换流器高压直流(voltage source converter based high voltage direct current,VSC-HVDC)控制策略。对于风电场侧电压源换流器,设计了一种新的交流电压–功角控制方法。对于交直流混合输电模式,该方法通过调节风电场交流母线电压与电压源换流器输出电压间的功角来实现定有功功率控制。对于纯柔性直流输电模式,风电场交流母线电压自动被调节为具有恒幅恒频的交流电压,实现了对波动风电的同步输送。该方法中输电模式的变化无需切换控制;另外,通过附加电流高通滤波器增强了对系统谐振的阻尼作用。对电网侧电压源换流器,采用一种新的直接电流矢量控制,使直流电压稳定在参考值上。运用PSCAD/EMTDC仿真软件对分别接入笼型感应发电机(squirrel cage induction generator,SCIG)风电场和双馈感应发电机(doubly fed induction generator,DFIG)风电场的交直流混合输电系统建模仿真。一系列运行条件下的仿真结果验证了控制方法的有效性与可行性。
文摘为揭示具有新型拓扑结构的基于模块化多电平换流器直流输电系统MMC-HVDC(modular multilevel converter high voltage direct current)的电磁暂态特性,对该系统进行典型扰动暂态响应的特性分析根据MMC拓扑结构,推导了交流电网不平衡时的MMC交流侧电磁暂态模型,并基于模型设计了正、负序双内环电流控制和外环功率控制的控制策略。同时,对MMC-HVDC在各种典型扰动下的暂态响应特性进行了详细的仿真分析,仿真结果表明所设计的控制策略的正确性。MMC-HVDC在遭受各种典型扰动时具有良好的暂态响应特性,并能稳定、充裕地运行。