Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter da...Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.展开更多
HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has...HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has been accumulating geodetic mission(GM)data for more than three years with 168-day cycle.In this paper,we present the preliminary gravity field inverted by the HY-2 A/GM data from March 2016 to December 2017 near Taiwan(21°–26°N,119°–123°E).The gravity anomaly is computed by Inverse Vening Meinesz(IVM)formula with a onedimensional FFT method during remove-restore procedure with the EGM2008 gravity model as the reference field.For comparison,CryoSat-2 altimeter data are used to inverse the gravity field near Taiwan Island by the same method.Comparing with the gravity field derived from CryoSat-2,a good agreement between the two data sets is found.The global ocean gravity models and National Geophysical Data Center(NGDC)shipboard gravity data also are used to assess the performance of HY-2 A/GM data.The evaluations show that HY-2 A and CryoSat-2 are at the same level in terms of gravity field recovery and the HY-2 A/GM altimeter-derived gravity field has an accuracy of 2.922 mGal.Therefore,we can believe that HY-2 A will be a new reliable data source for marine gravity field inversion and has the potentiality to improve the accuracy and resolution of the global marine gravity field.展开更多
The HY-2A satellite,which is equipped with a radar altimeter and was launched on August 16,2011,is the first Chinese marine dynamic environmental monitoring satellite.Extracting ocean tides is one of the important app...The HY-2A satellite,which is equipped with a radar altimeter and was launched on August 16,2011,is the first Chinese marine dynamic environmental monitoring satellite.Extracting ocean tides is one of the important applications of the radar altimeter data.The radar altimeter data of the HY-2A satellite from November 1,2011 to August 16,2014 are used herein to extract global ocean tides.The constants representing the tidal constituents are extracted by HY-2A RA data with harmonic analysis based on the least squares method.Considering tide aliasing issues,the analysis of the alias periods and alias synodic periods of different tidal constituents shows that only the tidal constituents M_(2),N_(2),and K_(2)are retrieved precisely by the HY-2A RA data.The derived tidal constants of the tidal constituents M_(2),N_(2)and K_(2)are compared to those of tidal gauge data and the TPXO tide model results.The comparison between the derived results and the tidal gauge data shows that the RMSEs of the tidal amplitude and phase lag are 9.6 cm and 13.34°,2.4 cm and 10.47°,and 8.1 cm and 14.19°for tidal constituents M_(2),N_(2),and K_(2),respectively.The comparisons of the semidiurnal tides with the TPXO model results show that tidal constituents have good consistency with the TPXO model results.These findings confirm the good performance of HY-2A RA for retrieving semidiurnal tides in the global ocean.展开更多
GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeter...GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeters. It took place in two time slices;one was from August to September 2014, and the other was in July 2015. One GPS buoy and two GPS reference stations were used in this campaign. The GPS data were processed using the real-time kinematic (RTK) technique. The fi nal error budget estimate when measuring the sea surface height (SSH) with a GPS buoy was better than 3.5 cm. Using the GPS buoy, the altimeter bias estimate was about -2.3 cm for the Jason-2 Geophysical Data Record (GDR) Version ‘D' and from -53.5 cm to -75.6 cm for the HY-2A Interim Geophysical Data Record (IGDR). The bias estimates for Jason-2 GDR-D are similar to the estimates from dedicated calibration sites such as the Harvest Platform, the Crete Site and the Bass Strait site. The bias estimates for HY-2A IGDR agree well with the results from the Crete calibration site. The results for the HY-2A altimeter bias estimated by the GPS buoy were verifi ed by cross-calibration, and they agreed well with the results from the global analysis method.展开更多
Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational signif...Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (-0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data, the RMSE and the mean bias is 0.36m and (-0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than -0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.展开更多
Satellite altimeter needs to be calibrated to evaluate the accuracy of sea surface height data.The dedicated altimeter calibration field needs to establish a special calibration strategy and needs to evaluate its cali...Satellite altimeter needs to be calibrated to evaluate the accuracy of sea surface height data.The dedicated altimeter calibration field needs to establish a special calibration strategy and needs to evaluate its calibration ability.This paper describes absolute calibration of HY-2 B altimeter SSH using the GPS calibration method at the newly Wanshan calibration site,located in the Wanshan Islands,China.There are two HY-2 B altimeter passes across the Wanshan calibration site.Pass No.362 is descending and the ground track passes the east of Dan’gan Island.Pass No.375 is ascending and crosses the Zhiwan Island.The GPS data processing strategy of Wanshan calibration site was established and the accuracy of GPS calibration method of Wanshan calibration site was evaluated.Meanwhile,the processing strategies of the HY-2 B altimeter for the Wanshan calibration site were established,and a dedicated geoid model data were used to benefit the calibration accuracy.The time-averaged HY-2 B altimeter bias was approximately 2.12 cm with a standard deviation of 2.08 cm.The performance of the HY-2 B correction microwave radiometer was also evaluated in terms of the wet troposphere path delay and showed a mean difference-0.2 cm with a 1.4 cm standard deviation with respect to the in situ GPS radiosonde.展开更多
The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on ...The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on the satellite,has the ability to realize all-weather and all-day observations of global sea-surface heights,as well as significant wave heights and sea-surface wind speeds.These observed data have been widely used in marine disaster prevention and reduction,along with resource development,maritime security and other fields.In order to achieve a comprehensive understanding of the multi-year overall observational performances of the HY-2A satellite’s radar altimeter,all of the observational data of the IGDR product from October 26,2012 to August 27,2017 were selected in this study for a comprehensive evaluation.The height measurement capability of the HY-2A satellite’s radar altimeter was evaluated using self-crossover and Jason-2 crossover methods.The height discrepancies at the self-crossover point of the HY-2A satellite’s ascending and descending orbits were also calculated.It was found that for the HY-2A satellite’s radar altimeter in global waters under the restriction conditions of ascending and descending orbits,the height anomaly differences were within a range of less than 30 cm.The absolute mean error was determined to be 5.81 cm,and the height anomaly standard deviation was 7.76 cm.Under the conditions of the observational areas being limited within a scope of 60°from the Equator,it was determined that the sea-level height anomaly differences were less than 10 cm at the junction of the ascending and descending orbits,the absolute mean error was 3.95 cm.In addition,the sea-level height anomaly standard deviation was observed to be 4.76cm.Using a mutual cross method with the Jason-2 satellite,it was found that under the conditions of the observational area being within the scope of 66°from the equator,the height anomaly differences at the junction were less than 30cm,and the absolute mean error of HY-2A and Jason-2 sea level height anomaly was 5.86 cm,with a standard deviation of 7.52 cm.It was observed that,if within the sea area the sea level height anomaly difference was limited to within 10cm,then the absolute mean error and standard deviation could reach 4.19cm and 4.98cm,respectively.It was confirmed that the HY-2A satellite’s radar altimeter had successfully reached the height measurement level of similar international altimeters.Therefore,it had the ability to meet the needs of marine scientific research and ocean circulation inversions.展开更多
Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH...Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.展开更多
HY-2 satellite is the first marine dynamic environment satellite of China.In this study,global evaporation and water vapor transport of the global sea surface are calculated on the basis of HY-2 multi-sensor data from...HY-2 satellite is the first marine dynamic environment satellite of China.In this study,global evaporation and water vapor transport of the global sea surface are calculated on the basis of HY-2 multi-sensor data from April 1 to 30,2014.The algorithm of evaporation and water vapor transport is discussed in detail,and results are compared with other reanalysis data.The sea surface temperature of HY-2 is in good agreement with the ARGO buoy data.Two clusters are shown in the scatter plot of HY-2 and OAFlux evaporation due to the uneven global distribution of evaporation.To improve the calculation accuracy,we compared the different parameterization schemes and adopted the method of calibrating HY-2 precipitation data by SSM/I and Global Precipitation Climatology Project(GPCP)data.In calculating the water vapor transport,the adjustment scheme is proposed to match the balance of the water cycle for data in the low latitudes.展开更多
This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a...This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section(NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function(NSCAT GMF), indicating satisfactory HSCAT performance.展开更多
Significant wave height(SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications,...Significant wave height(SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications, especially for climate studies. HY-2a altimeter has been operational since April 2012 and its products are available to the scientific community. In this work, SWH data from HY-2A altimeters are calibrated against in situ buoy data from the National Data Buoy Center(NDBC), Distinguished from previous calibration studies which generally regarded buoy data as "truth", the work of calibration for HY-2A altimeter wave data against in situ buoys was applied a more sophisticated statistical technique-the total least squares(TLS) method which can take into account errors in both variables. We present calibration results for HY-2A radar altimeter measurement of wave height against NDBC buoys. In addition, cross-calibration for HY-2A and Jason-2 wave data are talked over and the result is given.展开更多
The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography.Satellite altimetric gravity data can be a supplement and pla...The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography.Satellite altimetric gravity data can be a supplement and plays a key role in bathymetry modeling over these regions.The Synthetic Aperture Radar(SAR)altimeters in the missions like CryoSat-2 and Sentinel-3A/3B can relieve waveform contamination that existed in conventional altimeters and provide data with improved accuracy and spatial resolution.In this study,we investigate the potential application of SAR altimetric gravity data in enhancing coastal bathymetry,where the effects on local bathymetry modeling introduced from SAR altimetry data are quantified and evaluated.Furthermore,we study the effects on bathymetry modeling by using different scale factor calculation approaches,where a partition-wise scheme is implemented.The numerical experiment over the South Sandwich Islands near Antarctica suggests that using SARbased altimetric gravity data improves local coastal bathymetry modeling,compared with the model calculated without SAR altimetry data by a magnitude of 3:55 m within 10 km of offshore areas.Moreover,by using the partition-wise scheme for scale factor calculation,the quality of the coastal bathymetry model is improved by 7.34 m compared with the result derived from the traditional method.These results indicate the superiority of using SAR altimetry data in coastal bathymetry inversion.展开更多
The scatterometer (SCAT) on-board China's HY-2A satellite has the capability to provide high resolution wind vector information over the global ocean surface. These wind vector data produced by the HY-2A scatterome...The scatterometer (SCAT) on-board China's HY-2A satellite has the capability to provide high resolution wind vector information over the global ocean surface. These wind vector data produced by the HY-2A scatterometer (HY-2A SCAT) are available to the data assimilation system with real-time information of high accuracy. In this paper, two experiments are designed to investigate the impact of HY-2A SCAT data in the three- dimensional variational assimilation system for the Weather Research and Forecast model (WRF 3DVAR). The powerful Typhoon Bolaven, which struck South Korea in August 2012, is selected for this case study. The results clearly demonstrate that HY-2A SCAT data can effectively complement the scarce observations over the ocean surface and improve the prediction of the wind and pressure fields of a typhoon. The case study of Typhoon Bolaven exhibits the significant and positive impact of HY- 2A SCAT data on the numerical prediction of the tropical cyclone track.展开更多
The HY-2 satellite was successfully launched on 16 August 2011.It carried four microwave instruments into space for operationally observing dynamic ocean environment parameters on a global scale.The HY-2 satellite alt...The HY-2 satellite was successfully launched on 16 August 2011.It carried four microwave instruments into space for operationally observing dynamic ocean environment parameters on a global scale.The HY-2 satellite altimeter provides sea surface height(SSH),significant wave height(SWH),sea surface wind(SSW)speed,and polar ice sheet elevation,while the HY-2 satellite scatterometer provides SSW fields.At the same time,other oceanic and atmospheric parameters such as sea surface temperature(SST)and wind speed,water vapor and liquid water content can also be obtained by its onboard scanning microwave radiometer.In this paper,we show the data processing methods of the HY-2 satellite’s payloads.The preliminary results show that wind vector,SSH,SWH,and SST conform to the designed technical specifications.展开更多
A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have...A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.展开更多
This paper focuses on the data assimilation methods for sea surface winds, based on the level-2B HY-2A satellite microwave scatterometer wind products. We propose a new feature thinning method, which is herein used to...This paper focuses on the data assimilation methods for sea surface winds, based on the level-2B HY-2A satellite microwave scatterometer wind products. We propose a new feature thinning method, which is herein used to screen scatterometer winds while maintaining the key structure of the wind field in the process of data thinning for highresolution satellite observations. We also accomplish feeding the ambiguous wind solutions directly into the data assimilation system, thus making better use of the retrieved information while simplifying the assimilation process of the scatterometer products. A numerical simulation experiment involving Typhoon Danas shows that our method gives better results than the traditional approach. This method may be a valuable alternative for operational satellite data assimilation.展开更多
基金The National Natural Science Foundation of China under contract No.42076235.
文摘Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.
基金The National Natural Science Foundation of China under contract No.41906199the Youth Innovation Project of National Space Science Center of Chinese Academy of Sciences under contract No.E0PD40012S。
文摘HY-2 A(Haiyang-2 A),launched in 2011,is the first ocean dynamic environment satellite of China and is equipped with a radar altimeter as one of the primary payloads.HY-2 A shifted the drift orbit in March 2016 and has been accumulating geodetic mission(GM)data for more than three years with 168-day cycle.In this paper,we present the preliminary gravity field inverted by the HY-2 A/GM data from March 2016 to December 2017 near Taiwan(21°–26°N,119°–123°E).The gravity anomaly is computed by Inverse Vening Meinesz(IVM)formula with a onedimensional FFT method during remove-restore procedure with the EGM2008 gravity model as the reference field.For comparison,CryoSat-2 altimeter data are used to inverse the gravity field near Taiwan Island by the same method.Comparing with the gravity field derived from CryoSat-2,a good agreement between the two data sets is found.The global ocean gravity models and National Geophysical Data Center(NGDC)shipboard gravity data also are used to assess the performance of HY-2 A/GM data.The evaluations show that HY-2 A and CryoSat-2 are at the same level in terms of gravity field recovery and the HY-2 A/GM altimeter-derived gravity field has an accuracy of 2.922 mGal.Therefore,we can believe that HY-2 A will be a new reliable data source for marine gravity field inversion and has the potentiality to improve the accuracy and resolution of the global marine gravity field.
基金The National Key Research and Development Program of China under contract No.2016YFC1401801.
文摘The HY-2A satellite,which is equipped with a radar altimeter and was launched on August 16,2011,is the first Chinese marine dynamic environmental monitoring satellite.Extracting ocean tides is one of the important applications of the radar altimeter data.The radar altimeter data of the HY-2A satellite from November 1,2011 to August 16,2014 are used herein to extract global ocean tides.The constants representing the tidal constituents are extracted by HY-2A RA data with harmonic analysis based on the least squares method.Considering tide aliasing issues,the analysis of the alias periods and alias synodic periods of different tidal constituents shows that only the tidal constituents M_(2),N_(2),and K_(2)are retrieved precisely by the HY-2A RA data.The derived tidal constants of the tidal constituents M_(2),N_(2)and K_(2)are compared to those of tidal gauge data and the TPXO tide model results.The comparison between the derived results and the tidal gauge data shows that the RMSEs of the tidal amplitude and phase lag are 9.6 cm and 13.34°,2.4 cm and 10.47°,and 8.1 cm and 14.19°for tidal constituents M_(2),N_(2),and K_(2),respectively.The comparisons of the semidiurnal tides with the TPXO model results show that tidal constituents have good consistency with the TPXO model results.These findings confirm the good performance of HY-2A RA for retrieving semidiurnal tides in the global ocean.
基金Supported by the National Key R&D Program of China(No.2016YFC1401003)the National Natural Science Foundation of China(Nos.41406204,41501417)the Marine Public Welfare Project of China(No.201305032-3)
文摘GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeters. It took place in two time slices;one was from August to September 2014, and the other was in July 2015. One GPS buoy and two GPS reference stations were used in this campaign. The GPS data were processed using the real-time kinematic (RTK) technique. The fi nal error budget estimate when measuring the sea surface height (SSH) with a GPS buoy was better than 3.5 cm. Using the GPS buoy, the altimeter bias estimate was about -2.3 cm for the Jason-2 Geophysical Data Record (GDR) Version ‘D' and from -53.5 cm to -75.6 cm for the HY-2A Interim Geophysical Data Record (IGDR). The bias estimates for Jason-2 GDR-D are similar to the estimates from dedicated calibration sites such as the Harvest Platform, the Crete Site and the Bass Strait site. The bias estimates for HY-2A IGDR agree well with the results from the Crete calibration site. The results for the HY-2A altimeter bias estimated by the GPS buoy were verifi ed by cross-calibration, and they agreed well with the results from the global analysis method.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 201105032,201305032 and 201005030the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A505+2 种基金Global Change and Air-Sea Interaction Project of China under contract No.GASI-03-03-01-01the International Science&Technology Cooperation Program of China under contract No.2011DFA22260the Open funds of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOED1411
文摘Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (-0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data, the RMSE and the mean bias is 0.36m and (-0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than -0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.
基金The National Key R&D Program of China under contract Nos 2018YFB0504900 and 2018YFB0504904the National Natural Science Foundation of China under contract Nos 41406204 and 41501417the Operational Support Service System for Natural Resources Satellite Remote Sensing under contract No.180019。
文摘Satellite altimeter needs to be calibrated to evaluate the accuracy of sea surface height data.The dedicated altimeter calibration field needs to establish a special calibration strategy and needs to evaluate its calibration ability.This paper describes absolute calibration of HY-2 B altimeter SSH using the GPS calibration method at the newly Wanshan calibration site,located in the Wanshan Islands,China.There are two HY-2 B altimeter passes across the Wanshan calibration site.Pass No.362 is descending and the ground track passes the east of Dan’gan Island.Pass No.375 is ascending and crosses the Zhiwan Island.The GPS data processing strategy of Wanshan calibration site was established and the accuracy of GPS calibration method of Wanshan calibration site was evaluated.Meanwhile,the processing strategies of the HY-2 B altimeter for the Wanshan calibration site were established,and a dedicated geoid model data were used to benefit the calibration accuracy.The time-averaged HY-2 B altimeter bias was approximately 2.12 cm with a standard deviation of 2.08 cm.The performance of the HY-2 B correction microwave radiometer was also evaluated in terms of the wet troposphere path delay and showed a mean difference-0.2 cm with a 1.4 cm standard deviation with respect to the in situ GPS radiosonde.
基金The National Key Research and Development Program of China under contract No.2016YFC1401004the National Natural Science Foundation of China under contract No.41406207
文摘The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on the satellite,has the ability to realize all-weather and all-day observations of global sea-surface heights,as well as significant wave heights and sea-surface wind speeds.These observed data have been widely used in marine disaster prevention and reduction,along with resource development,maritime security and other fields.In order to achieve a comprehensive understanding of the multi-year overall observational performances of the HY-2A satellite’s radar altimeter,all of the observational data of the IGDR product from October 26,2012 to August 27,2017 were selected in this study for a comprehensive evaluation.The height measurement capability of the HY-2A satellite’s radar altimeter was evaluated using self-crossover and Jason-2 crossover methods.The height discrepancies at the self-crossover point of the HY-2A satellite’s ascending and descending orbits were also calculated.It was found that for the HY-2A satellite’s radar altimeter in global waters under the restriction conditions of ascending and descending orbits,the height anomaly differences were within a range of less than 30 cm.The absolute mean error was determined to be 5.81 cm,and the height anomaly standard deviation was 7.76 cm.Under the conditions of the observational areas being limited within a scope of 60°from the Equator,it was determined that the sea-level height anomaly differences were less than 10 cm at the junction of the ascending and descending orbits,the absolute mean error was 3.95 cm.In addition,the sea-level height anomaly standard deviation was observed to be 4.76cm.Using a mutual cross method with the Jason-2 satellite,it was found that under the conditions of the observational area being within the scope of 66°from the equator,the height anomaly differences at the junction were less than 30cm,and the absolute mean error of HY-2A and Jason-2 sea level height anomaly was 5.86 cm,with a standard deviation of 7.52 cm.It was observed that,if within the sea area the sea level height anomaly difference was limited to within 10cm,then the absolute mean error and standard deviation could reach 4.19cm and 4.98cm,respectively.It was confirmed that the HY-2A satellite’s radar altimeter had successfully reached the height measurement level of similar international altimeters.Therefore,it had the ability to meet the needs of marine scientific research and ocean circulation inversions.
文摘Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o.
基金the financial support from the National Natural Science Foundation of China (No. 4197 6017)the Ministry of Science and Technology of China (No. 2016YFC1401405)the National Natural Science Foundation of China (No. U1406401)
文摘HY-2 satellite is the first marine dynamic environment satellite of China.In this study,global evaporation and water vapor transport of the global sea surface are calculated on the basis of HY-2 multi-sensor data from April 1 to 30,2014.The algorithm of evaporation and water vapor transport is discussed in detail,and results are compared with other reanalysis data.The sea surface temperature of HY-2 is in good agreement with the ARGO buoy data.Two clusters are shown in the scatter plot of HY-2 and OAFlux evaporation due to the uneven global distribution of evaporation.To improve the calculation accuracy,we compared the different parameterization schemes and adopted the method of calibrating HY-2 precipitation data by SSM/I and Global Precipitation Climatology Project(GPCP)data.In calculating the water vapor transport,the adjustment scheme is proposed to match the balance of the water cycle for data in the low latitudes.
基金Supported by the National Natural Science Foundation of China(No.41106152)the National Science and Technology Support Program of China(No.2013BAD13B01)+3 种基金the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the International Science&Technology Cooperation Program of China(No.2011DFA22260)the National High Technology Industrialization Project(No.[2012]2083)the Marine Public Projects of China(Nos.201105032,201305032,201105002-07)
文摘This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section(NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function(NSCAT GMF), indicating satisfactory HSCAT performance.
基金The Marine Public Welfare Project of China under contract No.201305032
文摘Significant wave height(SWH) can be computed from the returning waveform of radar altimeter, this parameter is only raw estimates if it does not calibrate. But accurate calibration is important for all applications, especially for climate studies. HY-2a altimeter has been operational since April 2012 and its products are available to the scientific community. In this work, SWH data from HY-2A altimeters are calibrated against in situ buoy data from the National Data Buoy Center(NDBC), Distinguished from previous calibration studies which generally regarded buoy data as "truth", the work of calibration for HY-2A altimeter wave data against in situ buoys was applied a more sophisticated statistical technique-the total least squares(TLS) method which can take into account errors in both variables. We present calibration results for HY-2A radar altimeter measurement of wave height against NDBC buoys. In addition, cross-calibration for HY-2A and Jason-2 wave data are talked over and the result is given.
基金supported by the National Natural Science Foundation of China(No.42004008)the Natural Science Foundation of Jiangsu Province,China(No.BK20190498)+1 种基金the Fundamental Research Funds for the Central Universities(No.B220202055)the State Scholarship Fund from Chinese Scholarship Council(No.201306270014).
文摘The global bathymetry models are usually of low accuracy over the coastline of polar areas due to the harsh climatic environment and the complex topography.Satellite altimetric gravity data can be a supplement and plays a key role in bathymetry modeling over these regions.The Synthetic Aperture Radar(SAR)altimeters in the missions like CryoSat-2 and Sentinel-3A/3B can relieve waveform contamination that existed in conventional altimeters and provide data with improved accuracy and spatial resolution.In this study,we investigate the potential application of SAR altimetric gravity data in enhancing coastal bathymetry,where the effects on local bathymetry modeling introduced from SAR altimetry data are quantified and evaluated.Furthermore,we study the effects on bathymetry modeling by using different scale factor calculation approaches,where a partition-wise scheme is implemented.The numerical experiment over the South Sandwich Islands near Antarctica suggests that using SARbased altimetric gravity data improves local coastal bathymetry modeling,compared with the model calculated without SAR altimetry data by a magnitude of 3:55 m within 10 km of offshore areas.Moreover,by using the partition-wise scheme for scale factor calculation,the quality of the coastal bathymetry model is improved by 7.34 m compared with the result derived from the traditional method.These results indicate the superiority of using SAR altimetry data in coastal bathymetry inversion.
文摘The scatterometer (SCAT) on-board China's HY-2A satellite has the capability to provide high resolution wind vector information over the global ocean surface. These wind vector data produced by the HY-2A scatterometer (HY-2A SCAT) are available to the data assimilation system with real-time information of high accuracy. In this paper, two experiments are designed to investigate the impact of HY-2A SCAT data in the three- dimensional variational assimilation system for the Weather Research and Forecast model (WRF 3DVAR). The powerful Typhoon Bolaven, which struck South Korea in August 2012, is selected for this case study. The results clearly demonstrate that HY-2A SCAT data can effectively complement the scarce observations over the ocean surface and improve the prediction of the wind and pressure fields of a typhoon. The case study of Typhoon Bolaven exhibits the significant and positive impact of HY- 2A SCAT data on the numerical prediction of the tropical cyclone track.
基金supported by the National High-Tech Project of China(No.2008AA09A403)the Marine Public Welfare Project of China(No.201105032).
文摘The HY-2 satellite was successfully launched on 16 August 2011.It carried four microwave instruments into space for operationally observing dynamic ocean environment parameters on a global scale.The HY-2 satellite altimeter provides sea surface height(SSH),significant wave height(SWH),sea surface wind(SSW)speed,and polar ice sheet elevation,while the HY-2 satellite scatterometer provides SSW fields.At the same time,other oceanic and atmospheric parameters such as sea surface temperature(SST)and wind speed,water vapor and liquid water content can also be obtained by its onboard scanning microwave radiometer.In this paper,we show the data processing methods of the HY-2 satellite’s payloads.The preliminary results show that wind vector,SSH,SWH,and SST conform to the designed technical specifications.
文摘A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.
基金State Key Development Program for Basic Research of China(4175094)
文摘This paper focuses on the data assimilation methods for sea surface winds, based on the level-2B HY-2A satellite microwave scatterometer wind products. We propose a new feature thinning method, which is herein used to screen scatterometer winds while maintaining the key structure of the wind field in the process of data thinning for highresolution satellite observations. We also accomplish feeding the ambiguous wind solutions directly into the data assimilation system, thus making better use of the retrieved information while simplifying the assimilation process of the scatterometer products. A numerical simulation experiment involving Typhoon Danas shows that our method gives better results than the traditional approach. This method may be a valuable alternative for operational satellite data assimilation.