Based on HYbrid Coordinate Ocean Model (HYCOM) assimilation and observations, we analyzed seasonal variability of the salinity budget in the southeastern Arabian Sea (AS) and the southern part of the Bay of Bengal (BO...Based on HYbrid Coordinate Ocean Model (HYCOM) assimilation and observations, we analyzed seasonal variability of the salinity budget in the southeastern Arabian Sea (AS) and the southern part of the Bay of Bengal (BOB), as well as water exchange between the two basins. Results show that fresh water flux cannot explain salinity changes in salinity budget of both regions. Oceanic advection decreases salinity in the southeastern AS during the winter monsoon season and increases salinity in the southern BOB during the summer monsoon season. In winter, the Northeast Monsoon Current (NMC) carries fresher water from the BOB westward into the southern AS; this westward advection is confined to 4°-6°N and the upper 180 m south of the Indian peninsula. Part of the less saline water then turns northward, decreasing salinity in the southeastern AS. In summer, the Southwest Monsoon Current (SMC) advects high-salinity water from the AS eastward into the BOB, increasing salinity along its path. This eastward advection of high-salinity water south of the India Peninsula extends southward to 2°N, and the layer becomes shallower than in winter. In addition to the monsoon current, the salinity difference between the two basins is important for salinity advection.展开更多
基于HYCOM(Hybrid Coordinate Oceanic Circulation Model),以OFES(OGCM for the Earth Simulator)资料为参考,分析了KPP、MY2.5、KT三种不同混合方案对北太平洋西边界流系的模拟结果的影响。结果表明:三种不同混合方案模拟的上层海洋...基于HYCOM(Hybrid Coordinate Oceanic Circulation Model),以OFES(OGCM for the Earth Simulator)资料为参考,分析了KPP、MY2.5、KT三种不同混合方案对北太平洋西边界流系的模拟结果的影响。结果表明:三种不同混合方案模拟的上层海洋平均流场与OFES资料相似,但在流向和流幅上略有差异,其中KPP方案模拟的流速与OFES资料最为接近,MY2.5方案次之,KT方案与其差别最大。通过代表性断面上流速的对比分析,对模式就北赤道流、棉兰老流、棉兰老潜流、黑潮的模拟效果进行比较,KPP方案模拟的效果同前人的观测和研究最为接近。分析了北赤道流,棉兰老流,棉兰老潜流,黑潮的流量的季节变化特征,其中KPP方案与OFES资料计算的棉兰老流和棉兰老潜流的季节变化特征与前人描述比较一致,表现为春强秋弱。KPP方案和OFES资料的计算结果表明,北赤道流和棉兰老流大致上是同向变化的,而在冬季棉兰老流同黑潮的变化基本上是一致的。展开更多
Variations in water exchange through the Kerama Gap (between Okinawa Island and Miyakojima Island) from 1979 to 2003 were estimated with the 0.08° Pacific HYbrid Coordinate Ocean Model (HYCOM). The model resu...Variations in water exchange through the Kerama Gap (between Okinawa Island and Miyakojima Island) from 1979 to 2003 were estimated with the 0.08° Pacific HYbrid Coordinate Ocean Model (HYCOM). The model results show that the mean transport through the Kerama Gap (KGT) from the Pacific Ocean to the East China Sea (ECS) was 2.1 Sv, which agrees well with the observed mean KGT (2.0 Sv) for 2009- 2010. Over the time period examined, the monthly KGT varied from -10.9 Sv to 15.8 Sv and had a standard deviation of +5.0 Sv. The water mainly enters the ECS via the subsurface layer (300-500 m) along the northeastern slope of the Kerama Gap and mainly flows out of the ECS into the southwest of the Kerama Gap. The seasonal and interannual variations of the KGT and the Kuroshio upstream transport were negatively correlated. The Kuroshio upstream transport was largest in summer and smallest in auamm while the KGT was smallest in summer (1.02 Sv) and largest in spring (2.94 Sv) and autumn (2.44 Sv). The seasonal and interarmual variations in the Kuroshio downstream (across the PN-line) transport differed significantly from the Kuroshio upstream transport but corresponded well with the KGT and the sum of the transport through the Kerama Gap and the Kuroshio upstream, which indicates that information about variation in the KGT is important for determining variation in the Kuroshio transport along the PN-line.展开更多
OGCM(Ocean General Circulation Model普通海洋环流模式)简单的说就是把海洋原始方程组离散求解的过程。鉴于实际观测资料较少,无法满足研究需求,用数值模式进行数值模拟是实用的研究方法之一。目前海洋学界较为常用的OGCM有POM、FVCOM...OGCM(Ocean General Circulation Model普通海洋环流模式)简单的说就是把海洋原始方程组离散求解的过程。鉴于实际观测资料较少,无法满足研究需求,用数值模式进行数值模拟是实用的研究方法之一。目前海洋学界较为常用的OGCM有POM、FVCOM、HAMSOM、HYCOM等。这些模式有些适用于近岸海域,有些适用于大洋,各有其自身的特点。本文作者在对以上各模式使用与理解的基础上,对这几种模式进行了介绍,并对如何选用一个合适的模式给出了建议。展开更多
Data assimilation is a powerful tool to improve ocean forecasting by reducing uncertainties in forecast initial conditions.Recently,an ocean data assimilation system based on the ensemble optimal interpolation(EnOI) s...Data assimilation is a powerful tool to improve ocean forecasting by reducing uncertainties in forecast initial conditions.Recently,an ocean data assimilation system based on the ensemble optimal interpolation(EnOI) scheme and HYbrid Coordinate Ocean Model(HYCOM) for marginal seas around China was developed.This system can assimilate both satellite observations of sea surface temperature(SST) and along-track sea level anomaly(SLA) data.The purpose of this study was to evaluate the performance of the system.Two experiments were performed,which spanned a 3-year period from January 1,2004 to December 30,2006,with and without data assimilation.The data assimilation results were promising,with a positive impact on the modeled fields.The SST and SLA were clearly improved in terms of bias and root mean square error over the whole domain.In addition,the assimilations provided improvements in some regions to the surface field where mesoscale processes are not well simulated by the model.Comparisons with surface drifter trajectories showed that assimilated SST and SLA also better represent surface currents,with drifter trajectories fitting better to the contours of SLA field than that without assimilation.The forecasting capacity of this assimilation system was also evaluated through a case study of a birth-and-death process of an anticyclone eddy in the Northern South China Sea(NSCS),in which the anticyclone eddy was successfully hindcasted by the assimilation system.This study suggests the data assimilation system gives reasonable descriptions of the near-surface ocean state and can be applied to forecast mesoscale ocean processes in the marginal seas around China.展开更多
基金Supported by the National Basic Research Program of China (973Program) (No. 2010CB950300)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q11-02)+1 种基金the Knowledge Innovation Program of Chinese Academy of Sciences(No. KZCX2-YW-BR-04)the National Basic Research Program of China (973 Program) (No. 2012CB955603)
文摘Based on HYbrid Coordinate Ocean Model (HYCOM) assimilation and observations, we analyzed seasonal variability of the salinity budget in the southeastern Arabian Sea (AS) and the southern part of the Bay of Bengal (BOB), as well as water exchange between the two basins. Results show that fresh water flux cannot explain salinity changes in salinity budget of both regions. Oceanic advection decreases salinity in the southeastern AS during the winter monsoon season and increases salinity in the southern BOB during the summer monsoon season. In winter, the Northeast Monsoon Current (NMC) carries fresher water from the BOB westward into the southern AS; this westward advection is confined to 4°-6°N and the upper 180 m south of the Indian peninsula. Part of the less saline water then turns northward, decreasing salinity in the southeastern AS. In summer, the Southwest Monsoon Current (SMC) advects high-salinity water from the AS eastward into the BOB, increasing salinity along its path. This eastward advection of high-salinity water south of the India Peninsula extends southward to 2°N, and the layer becomes shallower than in winter. In addition to the monsoon current, the salinity difference between the two basins is important for salinity advection.
文摘基于HYCOM(Hybrid Coordinate Oceanic Circulation Model),以OFES(OGCM for the Earth Simulator)资料为参考,分析了KPP、MY2.5、KT三种不同混合方案对北太平洋西边界流系的模拟结果的影响。结果表明:三种不同混合方案模拟的上层海洋平均流场与OFES资料相似,但在流向和流幅上略有差异,其中KPP方案模拟的流速与OFES资料最为接近,MY2.5方案次之,KT方案与其差别最大。通过代表性断面上流速的对比分析,对模式就北赤道流、棉兰老流、棉兰老潜流、黑潮的模拟效果进行比较,KPP方案模拟的效果同前人的观测和研究最为接近。分析了北赤道流,棉兰老流,棉兰老潜流,黑潮的流量的季节变化特征,其中KPP方案与OFES资料计算的棉兰老流和棉兰老潜流的季节变化特征与前人描述比较一致,表现为春强秋弱。KPP方案和OFES资料的计算结果表明,北赤道流和棉兰老流大致上是同向变化的,而在冬季棉兰老流同黑潮的变化基本上是一致的。
基金Supported by the National Natural Science Foundation of China(No.41306020)the National Ocean Subject(No.XDA11020601)+1 种基金the NSFC Shandong Joint Found for Marine Science Research Centers(No.U1406401)the NSFC Innovative Group Grant(No.41421005)
文摘Variations in water exchange through the Kerama Gap (between Okinawa Island and Miyakojima Island) from 1979 to 2003 were estimated with the 0.08° Pacific HYbrid Coordinate Ocean Model (HYCOM). The model results show that the mean transport through the Kerama Gap (KGT) from the Pacific Ocean to the East China Sea (ECS) was 2.1 Sv, which agrees well with the observed mean KGT (2.0 Sv) for 2009- 2010. Over the time period examined, the monthly KGT varied from -10.9 Sv to 15.8 Sv and had a standard deviation of +5.0 Sv. The water mainly enters the ECS via the subsurface layer (300-500 m) along the northeastern slope of the Kerama Gap and mainly flows out of the ECS into the southwest of the Kerama Gap. The seasonal and interannual variations of the KGT and the Kuroshio upstream transport were negatively correlated. The Kuroshio upstream transport was largest in summer and smallest in auamm while the KGT was smallest in summer (1.02 Sv) and largest in spring (2.94 Sv) and autumn (2.44 Sv). The seasonal and interarmual variations in the Kuroshio downstream (across the PN-line) transport differed significantly from the Kuroshio upstream transport but corresponded well with the KGT and the sum of the transport through the Kerama Gap and the Kuroshio upstream, which indicates that information about variation in the KGT is important for determining variation in the Kuroshio transport along the PN-line.
文摘OGCM(Ocean General Circulation Model普通海洋环流模式)简单的说就是把海洋原始方程组离散求解的过程。鉴于实际观测资料较少,无法满足研究需求,用数值模式进行数值模拟是实用的研究方法之一。目前海洋学界较为常用的OGCM有POM、FVCOM、HAMSOM、HYCOM等。这些模式有些适用于近岸海域,有些适用于大洋,各有其自身的特点。本文作者在对以上各模式使用与理解的基础上,对这几种模式进行了介绍,并对如何选用一个合适的模式给出了建议。
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX1-YW-12-03)the National Basic Research Program of China (973 Program) (No. 2006CB403600)+1 种基金China COPES Project (No.GYHY-200706005)the National Natural Science Foundation of China (No. 40821092)
文摘Data assimilation is a powerful tool to improve ocean forecasting by reducing uncertainties in forecast initial conditions.Recently,an ocean data assimilation system based on the ensemble optimal interpolation(EnOI) scheme and HYbrid Coordinate Ocean Model(HYCOM) for marginal seas around China was developed.This system can assimilate both satellite observations of sea surface temperature(SST) and along-track sea level anomaly(SLA) data.The purpose of this study was to evaluate the performance of the system.Two experiments were performed,which spanned a 3-year period from January 1,2004 to December 30,2006,with and without data assimilation.The data assimilation results were promising,with a positive impact on the modeled fields.The SST and SLA were clearly improved in terms of bias and root mean square error over the whole domain.In addition,the assimilations provided improvements in some regions to the surface field where mesoscale processes are not well simulated by the model.Comparisons with surface drifter trajectories showed that assimilated SST and SLA also better represent surface currents,with drifter trajectories fitting better to the contours of SLA field than that without assimilation.The forecasting capacity of this assimilation system was also evaluated through a case study of a birth-and-death process of an anticyclone eddy in the Northern South China Sea(NSCS),in which the anticyclone eddy was successfully hindcasted by the assimilation system.This study suggests the data assimilation system gives reasonable descriptions of the near-surface ocean state and can be applied to forecast mesoscale ocean processes in the marginal seas around China.