As one of the 2D transition metal sulfides,1T phase MoS_(2) nanosheets(NSs)have been studied because of their distinguished conductivity and suitable electronic structure.Nevertheless,the active sites are limited to a...As one of the 2D transition metal sulfides,1T phase MoS_(2) nanosheets(NSs)have been studied because of their distinguished conductivity and suitable electronic structure.Nevertheless,the active sites are limited to a small number of edge sites only,while the basal plane is catalytically inert.Herein,we report that boron(B)doped 1T phase MoS_(2) NSs can replace precious metals as a co-catalyst to assist in photocatalytic H_(2) production of 2D layered g-C_(3)N_(4) nanosheets(g-C_(3)N_(4) NSs).The H_(2) evolution rate of prepared B-MoS_(2)@g-C_(3)N_(4) composites with 15 wt%B-MoS_(2)(B-MoS_(2)@g-C_(3)N_(4)–15,1612.75μmol h^(−1) g^(−1))is 52.33 times of pure g-C_(3)N_(4) NSs(30.82μmol h^(−1) g^(−1)).Furthermore,the apparent quantum efficiency(AQE)of B-MoS_(2)@g-C_(3)N_(4)–15 composites under the light atλ=370 nm is calculated and reaches 5.54%.The excellent photocatalytic performance of B-MoS_(2)@g-C_(3)N_(4)–15 composites is attributed to the B ions doping inducing the distortion of 1T phase MoS_(2) crystal,which can activate more base planes to offer more active sites for H_(2) evolution reaction(HER).This work of B-MoS_(2)@g-C_(3)N_(4) composites offers experience in the progress of effective and low-price photocatalysts for HER.展开更多
基金fundings from the National Natural Science Foundation of China(No.51872173)Taishan Scholars Program of Shandong Province(No.tsqn201812068)+1 种基金Natural Science Foundation of Shandong Province(No.ZR2022JQ21)Higher School Youth Innovation Team of Shandong Province(No.2019KJA013).
文摘As one of the 2D transition metal sulfides,1T phase MoS_(2) nanosheets(NSs)have been studied because of their distinguished conductivity and suitable electronic structure.Nevertheless,the active sites are limited to a small number of edge sites only,while the basal plane is catalytically inert.Herein,we report that boron(B)doped 1T phase MoS_(2) NSs can replace precious metals as a co-catalyst to assist in photocatalytic H_(2) production of 2D layered g-C_(3)N_(4) nanosheets(g-C_(3)N_(4) NSs).The H_(2) evolution rate of prepared B-MoS_(2)@g-C_(3)N_(4) composites with 15 wt%B-MoS_(2)(B-MoS_(2)@g-C_(3)N_(4)–15,1612.75μmol h^(−1) g^(−1))is 52.33 times of pure g-C_(3)N_(4) NSs(30.82μmol h^(−1) g^(−1)).Furthermore,the apparent quantum efficiency(AQE)of B-MoS_(2)@g-C_(3)N_(4)–15 composites under the light atλ=370 nm is calculated and reaches 5.54%.The excellent photocatalytic performance of B-MoS_(2)@g-C_(3)N_(4)–15 composites is attributed to the B ions doping inducing the distortion of 1T phase MoS_(2) crystal,which can activate more base planes to offer more active sites for H_(2) evolution reaction(HER).This work of B-MoS_(2)@g-C_(3)N_(4) composites offers experience in the progress of effective and low-price photocatalysts for HER.