Electrochemical reduction of CO_(2)into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO_(2)capture and utilization,resulting from their high catalytic a...Electrochemical reduction of CO_(2)into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO_(2)capture and utilization,resulting from their high catalytic activity and selectivity.The mobility and accessibility of active sites in Cubased catalysts significantly hinder the development of efficient Cu-based catalysts for CO_(2)electrochemical reduction reaction(CO_(2)RR).Herein,a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride(g-C_(3)N_(4))as the active sites for CO_(2)-to-CH_(4)conversion in CO_(2)RR.By regulating the coordination and density of Cu sites in g-C_(3)N_(4),an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH_(4)Faraday efficiency of 49.04%and produces the products with a high CH_(4)/C_(2)H_(4)ratio over 9.This work provides the first experimental study on g-C_(3)N_(4)-supported single Cu atom catalyst for efficient CH_(4)production from CO_(2)RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO_(2)RR by engineering Cu active sites in 2D materials with porous crystal structures.展开更多
Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SS...Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame.展开更多
Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important r...Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important role than the surface roughness,local pH,and facet in governing the selectivity toward C_(1)or C_(2)hydrocarbons.The selectivity toward C_(2)H_(4) progressively increases,while CH_(4) decreases steadily upon lowering the Cu oxidation species fraction.At a relatively low electrodeposition voltage of 1.5 V,the Cu gas-diffusion electrode with the highest Cu^(δ+)/Cu^(0)ratio favors the pathways of∗CO hydrogenation to form CH_(4) with maximum Faradaic efficiency of 65.4%and partial current density of 228 mA cm^(−2)at−0.83 V vs RHE.At 2.0 V,the Cu gas-diffusion electrode with the lowest Cu^(δ+)/Cu^(0)ratio prefers C-C coupling to form C_(2)+products with Faradaic efficiency topping 80.1%at−0.75 V vs RHE,where the Faradaic efficiency of C_(2)H_(4) accounts for 46.4%and the partial current density of C_(2)H_(4) achieves 279 mA cm^(−2).This work demonstrates that the selectivity from CH_(4) to C_(2)H_(4) is switchable by tuning surface Cu species composition of Cu gas-diffusion electrodes.展开更多
Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinet...Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.展开更多
Acetylene purification from methane is challenging in the field of porous organic polymers(POPs).Herein,we have provided one-pot Ullmann coupling reaction to synthesize a series of POPs with rich N-sites,named FJU-POP...Acetylene purification from methane is challenging in the field of porous organic polymers(POPs).Herein,we have provided one-pot Ullmann coupling reaction to synthesize a series of POPs with rich N-sites,named FJU-POP-n,wherein the low-cost and non-toxic Cu(acac)2 and environmental-friendly glycerol are employed as catalyst and solvent,respectively.展开更多
Thermochemical two-step CO_(2) splitting is a potential approach that fixes the sustainable resource into transportable liquid fuels.However,the harsh CO_(2) splitting conditions,the limited oxygen release kinetics an...Thermochemical two-step CO_(2) splitting is a potential approach that fixes the sustainable resource into transportable liquid fuels.However,the harsh CO_(2) splitting conditions,the limited oxygen release kinetics and capacity of metal oxides block further promoted the CO yield and solar-to-fuel energy efficiency.Here,we propose a different carbon cycle assisted by Ni/La_(2)O_(3) via coupling methane decomposition with thermochemical CO_(2) splitting,replacing conventional metal oxides cycle.Superior performance was demonstrated with methane conversion reached around 94%with almost pure H_(2) generation.Encouragingly,CO_(2) conversion of 98%and CO yield of 6.9 mmol g^(-1) derived from CO_(2) were achieved,with peak CO evolution rate(402 mL min^(-1) g^(-1))of orders of magnitude higher than that in metal oxide process and outstanding thermodynamic solar-to-fuel energy efficiency(55.5%vs.18.5%).This was relevant to the synergistic activation of La_(2)O_(3) and Ni for CO_(2) in carbon cycle,thus improving CO_(2) splitting reaction with carbon species.展开更多
As the greenhouse effect concerns increases,the development of new materials for the efficient capture and separation of CO_(2)gas from gas mixtures has become a matter of urgency.In this study,we performed density fu...As the greenhouse effect concerns increases,the development of new materials for the efficient capture and separation of CO_(2)gas from gas mixtures has become a matter of urgency.In this study,we performed density functional theory(DFT)calculations to investigate the adsorption and separation behavior of CO_(2)/CH_(4)/H_(2)on the surface of two-dimensional(2D)Al_(2)C materials under positive/negative applied electric fields.In the absence of an electric field CO_(2)is weakly physisorbed on the Al_(2)C surface,but with the application of an applied electric field,the adsorption state of CO_(2)gradually changes from physical to chemisorption(adsorption energy changes from-0.29 e V to-3.61 e V),while the negative electric field has little effect on the adsorption of CO_(2).We conclude that the C=O bond in adsorbed CO_(2)can be activated under an external electric field(maximum activation of 15%under an external electric field of 0-0.005 a.u.).Only in the presence of an applied electric field of 0.0033 a.u.and temperatures above525 K/675 K can the adsorption/separation reaction of CO_(2)single adsorption and CO_(2)/CH_(4)/H_(2)mixture be spontaneous.The adsorption/desorption of CO_(2)on Al_(2)C nanosheet in an electric field of 0.003-0.0033 a.u.is all exothermic,which can be easily controlled by switching on/off the electric field without any energy barriers.The capacity of Al_(2)C to capture CO_(2)per unit electric field decreases with increasing CO_(2)concentration,but still has efficient gas separation properties for CO_(2)/CH_(4)/H_(2).Our theoretical results could provide guidance for designing high-capacity and high-selectivity CO_(2)capture materials.展开更多
基金This work was supported by the Fundamental Research Funds for the Central Universities(2232021A-02 and 2232023Y-01)the National Natural Science Foundation of China(Nos.52122312,22209024 and 22202183).
文摘Electrochemical reduction of CO_(2)into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO_(2)capture and utilization,resulting from their high catalytic activity and selectivity.The mobility and accessibility of active sites in Cubased catalysts significantly hinder the development of efficient Cu-based catalysts for CO_(2)electrochemical reduction reaction(CO_(2)RR).Herein,a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride(g-C_(3)N_(4))as the active sites for CO_(2)-to-CH_(4)conversion in CO_(2)RR.By regulating the coordination and density of Cu sites in g-C_(3)N_(4),an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH_(4)Faraday efficiency of 49.04%and produces the products with a high CH_(4)/C_(2)H_(4)ratio over 9.This work provides the first experimental study on g-C_(3)N_(4)-supported single Cu atom catalyst for efficient CH_(4)production from CO_(2)RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO_(2)RR by engineering Cu active sites in 2D materials with porous crystal structures.
文摘Turbulent nonpremixed CH4/H2 flame has been simulated using several typical differential secondmoment turbulence closure (SMTC) models. To clarify the applicability of the various models, the LRR-IP model,JM model, SSG model as well as two modified LRR-IP models were tested. Some of above-mentioned SMTC models cannot provide the overall satisfactory predictions of this challenging case. It is confirmed again that the standard LRR-IP model considerably overpredict the centerline velocity decay rate, and therefore performs not well. Also it is interesting to observe that the JM model does not perform well in this challenging test case, although it has already been proved successful in other cases. The SSG model produces quite satisfactory prediction and performs equally well or better than the two modified LRR-IP models in the reacting case. It can be concluded that the modified LRR-IP models as well as the SSG model are superior to the other SMTC models in the turbulent nonpremixed CH4/H2 flame.
基金partially financially supported by NSF CBET-2033343.J.Z.thanks the support from National Natural Science Foundation of China(52172293,51772072,and 51672065)the Fundamental Research Funds for the Central Universities(JZ2021HGQB0282 and PA2021GDSK0088)+3 种基金financial support from the Key R&D Projects of Anhui Province(202104b11020016)the 111 Project(B18018)the National Synchrotron Light Source II,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No.DE-SC0012704the use of facilities within the Eyring Materials Center at Arizona State University supported in part by NNCI-ECCS-1542160.
文摘Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important role than the surface roughness,local pH,and facet in governing the selectivity toward C_(1)or C_(2)hydrocarbons.The selectivity toward C_(2)H_(4) progressively increases,while CH_(4) decreases steadily upon lowering the Cu oxidation species fraction.At a relatively low electrodeposition voltage of 1.5 V,the Cu gas-diffusion electrode with the highest Cu^(δ+)/Cu^(0)ratio favors the pathways of∗CO hydrogenation to form CH_(4) with maximum Faradaic efficiency of 65.4%and partial current density of 228 mA cm^(−2)at−0.83 V vs RHE.At 2.0 V,the Cu gas-diffusion electrode with the lowest Cu^(δ+)/Cu^(0)ratio prefers C-C coupling to form C_(2)+products with Faradaic efficiency topping 80.1%at−0.75 V vs RHE,where the Faradaic efficiency of C_(2)H_(4) accounts for 46.4%and the partial current density of C_(2)H_(4) achieves 279 mA cm^(−2).This work demonstrates that the selectivity from CH_(4) to C_(2)H_(4) is switchable by tuning surface Cu species composition of Cu gas-diffusion electrodes.
基金supported by the funding from the National Natural Science Foundation of China(grant nos.51902187,52072224,and 51732007)the Natural Science Foundation of Shandong Province(ZR2018BEM010)+3 种基金the Science Fund for Distinguished Young Scholars of Shandong Province(ZR2019JQ16)the Fundamental Research Funds of Shandong UniversityYoung Elite Scientist Sponsorship Program by CAST(YESS)the support from Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
文摘Driven by safety issues,environmental concerns,and high costs,rechargeable aqueous zinc-ion batteries(ZIBs)have received increasing attention in recent years owing to their unique advantages.However,the sluggish kinetics of divalent charge Zn^(2+)in the cathode materials caused by the strong electrostatic interaction and their unsatisfactory cycle life hinder the development of ZIBs.Herein,organic cations and Zn^(2+)ions co-pre-inserted vanadium oxide([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O are reported as the cathode for ultra-stable aqueous ZIBs,in which the weaker electrostatic interactions between Zn^(2+)and organic ion-pinned vanadium oxide can induce the high reversibility of Zn^(2+)insertion and extraction,thereby improving the cycle life.It is demonstrated that([N(CH_(3))_(4)]_(0.77),Zn_(0.23))V_(8)O_(20)·3.8H_(2)O cathodes deliver a discharge capacity of 181 mA h g^(-1)at8 A g^(-1)and ultra-long life span(99.5%capacity retention after 2000 cycles).A reversible Zn^(2+)/H^(+)ions(de)intercalation storage process and pseudocapacitive charge storage are characterized.The weaker interactions between organic ion and Zn^(2+)open a novel avenue for the design of highly reversible cathode materials with long-term cycling stability.
基金This work was financially supported by the National Natural Science Foundation of China(grant nos.21975044,21971038 and 219722810)Fujian Provincial Department of Science and Technology(2018J07001,2019L3004,2019H6012 and 2021H0062).
文摘Acetylene purification from methane is challenging in the field of porous organic polymers(POPs).Herein,we have provided one-pot Ullmann coupling reaction to synthesize a series of POPs with rich N-sites,named FJU-POP-n,wherein the low-cost and non-toxic Cu(acac)2 and environmental-friendly glycerol are employed as catalyst and solvent,respectively.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020100)the National Key R&D Program of China(2016YFA0202-801)+1 种基金the National Natural Science Foundation of China(NSFC)grants(21676269,21706254,21878283,22022814)the Dalian Institute of Chemical Physics,CAS(DICP I201916)。
文摘Thermochemical two-step CO_(2) splitting is a potential approach that fixes the sustainable resource into transportable liquid fuels.However,the harsh CO_(2) splitting conditions,the limited oxygen release kinetics and capacity of metal oxides block further promoted the CO yield and solar-to-fuel energy efficiency.Here,we propose a different carbon cycle assisted by Ni/La_(2)O_(3) via coupling methane decomposition with thermochemical CO_(2) splitting,replacing conventional metal oxides cycle.Superior performance was demonstrated with methane conversion reached around 94%with almost pure H_(2) generation.Encouragingly,CO_(2) conversion of 98%and CO yield of 6.9 mmol g^(-1) derived from CO_(2) were achieved,with peak CO evolution rate(402 mL min^(-1) g^(-1))of orders of magnitude higher than that in metal oxide process and outstanding thermodynamic solar-to-fuel energy efficiency(55.5%vs.18.5%).This was relevant to the synergistic activation of La_(2)O_(3) and Ni for CO_(2) in carbon cycle,thus improving CO_(2) splitting reaction with carbon species.
基金funded by the National Natural Science Foundation of China(No.21603109)the Henan Joint Fund of the National Natural Science Foundation of China(No.U1404216)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676)。
文摘As the greenhouse effect concerns increases,the development of new materials for the efficient capture and separation of CO_(2)gas from gas mixtures has become a matter of urgency.In this study,we performed density functional theory(DFT)calculations to investigate the adsorption and separation behavior of CO_(2)/CH_(4)/H_(2)on the surface of two-dimensional(2D)Al_(2)C materials under positive/negative applied electric fields.In the absence of an electric field CO_(2)is weakly physisorbed on the Al_(2)C surface,but with the application of an applied electric field,the adsorption state of CO_(2)gradually changes from physical to chemisorption(adsorption energy changes from-0.29 e V to-3.61 e V),while the negative electric field has little effect on the adsorption of CO_(2).We conclude that the C=O bond in adsorbed CO_(2)can be activated under an external electric field(maximum activation of 15%under an external electric field of 0-0.005 a.u.).Only in the presence of an applied electric field of 0.0033 a.u.and temperatures above525 K/675 K can the adsorption/separation reaction of CO_(2)single adsorption and CO_(2)/CH_(4)/H_(2)mixture be spontaneous.The adsorption/desorption of CO_(2)on Al_(2)C nanosheet in an electric field of 0.003-0.0033 a.u.is all exothermic,which can be easily controlled by switching on/off the electric field without any energy barriers.The capacity of Al_(2)C to capture CO_(2)per unit electric field decreases with increasing CO_(2)concentration,but still has efficient gas separation properties for CO_(2)/CH_(4)/H_(2).Our theoretical results could provide guidance for designing high-capacity and high-selectivity CO_(2)capture materials.