The low porosity of metal-organic framework glass makes it difficult to prepare membranes with high permeability.To solve this problem,we fabricated a series of self-supported zeolite glass composite membranes with di...The low porosity of metal-organic framework glass makes it difficult to prepare membranes with high permeability.To solve this problem,we fabricated a series of self-supported zeolite glass composite membranes with different 4A zeolite loadings using the abundant pore structure of the zeolite.The 4A zeolite embedded in the zeolite glass composite membrane preserved the ligand bonds and chemical structure.The self-supported zeolite glass composite membranes exhibited good interfacial compatibility.More importantly,the incorporation of the 4A zeolite significantly improved the CO_(2)adsorption capacity of the pure a_(g)ZIF-62 membranes.In addition,gas separation performance measurements showed that the(a_(g)ZIF-62)_(0.7)(4A)_(0.3)membrane had a permeability of 13,329 Barrer for pure CO_(2)and an ideal selectivity of 31.7 for CO_(2)/CH_(4),which exceeded Robeson's upper bound.The(a_(g)ZIF-62)_(0.7)(4A)_(0.3)membrane exhibited good operational stability in the variable pressure test and 48 h long-term continuous test.This study provides a method for preparing zeolite glass composite membranes.展开更多
Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,s...Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.展开更多
To enhance the separation selectivity of Mg-MOF-74 towards CO_(2) in a CO_(2)/N_(2) mixture,a series of Mg-MOF-74 and Ni_(x)/Mg_(1-x)-MOF-74 adsorbents were prepared by solvothermal synthesis in this paper.It was foun...To enhance the separation selectivity of Mg-MOF-74 towards CO_(2) in a CO_(2)/N_(2) mixture,a series of Mg-MOF-74 and Ni_(x)/Mg_(1-x)-MOF-74 adsorbents were prepared by solvothermal synthesis in this paper.It was found that the adsorption capacity of Mg-MOF-74 for CO_(2) could be effectively increased by optimizing the amount of acetic acid.On this basis,the bimetal MOF-74 adsorbent was prepared by metal modification.The multi-component dynamic adsorption penetration analysis was utilized to examine the CO_(2) adsorption capacity and CO_(2)/N_(2) selectivity of the diverse adsorbent materials.The results showed that Ni0.11/Mg0.89-MOF-74 showed a CO_(2) adsorption capacity of 7.02 mmol/g under pure CO_(2) atmosphere and had a selectivity of 20.50 for CO_(2)/N_(2) under 15% CO_(2)/85%N_(2) conditions,which was 10.2% and 18.02% higher than that of Mg-MOF-74 respectively.Combining XPS,SEM and N_(2) adsorption-desorption characterization analysis,it was attributed to the effect of the more stable unsaturated metal sites Ni into the Mg-MOF-74 on the pore structure and the synergistic interaction between the two metals.Density Functional Theory(DFT)simulations revealed that the synergistic interaction between modulated the electrostatic potential strength and gradient of the material,which was more favorable for the adsorption of CO_(2) molecules with small diameters and large quadrupole moment.In addition,the Ni0.11/Mg0.89-MOF-74 showed commendable cyclic stability,underscoring its promising potential for practical applications.展开更多
Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic ...Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts.展开更多
Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar f...Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity.展开更多
基金supported by the S&T Program of Hebei(no.22373709D).
文摘The low porosity of metal-organic framework glass makes it difficult to prepare membranes with high permeability.To solve this problem,we fabricated a series of self-supported zeolite glass composite membranes with different 4A zeolite loadings using the abundant pore structure of the zeolite.The 4A zeolite embedded in the zeolite glass composite membrane preserved the ligand bonds and chemical structure.The self-supported zeolite glass composite membranes exhibited good interfacial compatibility.More importantly,the incorporation of the 4A zeolite significantly improved the CO_(2)adsorption capacity of the pure a_(g)ZIF-62 membranes.In addition,gas separation performance measurements showed that the(a_(g)ZIF-62)_(0.7)(4A)_(0.3)membrane had a permeability of 13,329 Barrer for pure CO_(2)and an ideal selectivity of 31.7 for CO_(2)/CH_(4),which exceeded Robeson's upper bound.The(a_(g)ZIF-62)_(0.7)(4A)_(0.3)membrane exhibited good operational stability in the variable pressure test and 48 h long-term continuous test.This study provides a method for preparing zeolite glass composite membranes.
基金support from Sichuan Science and Technology Program(2021YFH0116)National Natural Science Foundation of China(No.52170112)DongFang Boiler Co.,Ltd.(3522015).
文摘Mixed matrix membranes(MMMs)could combine the advantages of both polymeric membranes and porousfillers,making them an effective alternative to conventional polymer membranes.However,interfacial incompatibility issues,such as the presence of interfacial voids,hardening of polymer chains,and blockage of micropores by polymers between common MMMsfillers and the polymer matrix,currently limit the gas sep-aration performance of MMMs.Ternary phase MMMs(consisting of afiller,an additive,and a matrix)made by adding a third compound,usually functionalized additives,can overcome the structural problems of binary phase MMMs and positively impact membrane separation performance.This review introduces the structure and fabrication processes for ternary MMMs,categorizes various nanofillers and the third component,and summarizes and analyzes in detail the CO_(2) separation performance of newly developed ternary MMMs based on both rubbery and glassy polymers.Based on this separation data,the challenges of ternary MMMs are also discussed.Finally,future directions for ternary MMMs are proposed.
基金supported by National Natural Science Foundation of China(U23A20100)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA0390404)+5 种基金ICC CAS SCJC-DT-2023-03,the Foundation of State Key Laboratory of Coal Conversion(J24-25-619)Youth Innovation Promotion Association CAS(2018209,2020179)Key R&D Program of Shanxi Province(202102090301008,202202090301013)the special fund for S&T Innovation Team of Shanxi Province(202204051001012)Project of International Cooperation and Exchange NSFC-RFBR(22011530069)Tianjin Science and Technology Plan Project(22YFYSHZ00290)。
文摘To enhance the separation selectivity of Mg-MOF-74 towards CO_(2) in a CO_(2)/N_(2) mixture,a series of Mg-MOF-74 and Ni_(x)/Mg_(1-x)-MOF-74 adsorbents were prepared by solvothermal synthesis in this paper.It was found that the adsorption capacity of Mg-MOF-74 for CO_(2) could be effectively increased by optimizing the amount of acetic acid.On this basis,the bimetal MOF-74 adsorbent was prepared by metal modification.The multi-component dynamic adsorption penetration analysis was utilized to examine the CO_(2) adsorption capacity and CO_(2)/N_(2) selectivity of the diverse adsorbent materials.The results showed that Ni0.11/Mg0.89-MOF-74 showed a CO_(2) adsorption capacity of 7.02 mmol/g under pure CO_(2) atmosphere and had a selectivity of 20.50 for CO_(2)/N_(2) under 15% CO_(2)/85%N_(2) conditions,which was 10.2% and 18.02% higher than that of Mg-MOF-74 respectively.Combining XPS,SEM and N_(2) adsorption-desorption characterization analysis,it was attributed to the effect of the more stable unsaturated metal sites Ni into the Mg-MOF-74 on the pore structure and the synergistic interaction between the two metals.Density Functional Theory(DFT)simulations revealed that the synergistic interaction between modulated the electrostatic potential strength and gradient of the material,which was more favorable for the adsorption of CO_(2) molecules with small diameters and large quadrupole moment.In addition,the Ni0.11/Mg0.89-MOF-74 showed commendable cyclic stability,underscoring its promising potential for practical applications.
基金National Research Foundation (NRF) of Korea grant funded by the Korea Government (MSIT) (NRF-2022R1A2C2093415)partially funding from the Circle Foundation (Republic of Korea) (Grant Number: 2023 TCF Innovative Science Project-03))partially Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2022R1A6C101A751)。
文摘Utilizing sunlight to convert CO_(2) into chemical fuels could address the greenhouse effect and fossil fuel crisis,Heterojunction structure catalysts with oxygen vacancy are attractive in the field of photocatalytic CO_(2) conversion.Herein,a modified TiO_(2)/In_(2)O_(3)(R-P2 5/In_(2)O_(3-x)) type Ⅱ heterojunction composite with oxygen vacancies is designed for photocatalytic CO_(2) reduction,which exhibits excellent CO_(2) reduction activity,with a C_(2) selectivity of 56.66%(in terms of R_(electron)).In situ Fourier-transform infrared spectroscopy(DRIFTS) and time-resolved photoluminescence(TR-PL) spectroscopy are used to reveal the intermediate formation of the photocatalytic mechanism and photogenerated electron lifetime,respectively.The experimental characterizations reveal that the R-P25/In_(2)O_(3-x) composite shows a remarkable behavior for coupling C-C bonds.Besides,efficient charge separation contributes to the improved CO_(2) conversion performance of photocatalysts.This work introduces a type Ⅱ heterojunction composite photocatalyst,which promotes understanding the CO_(2) reduction mechanisms on heterojunction composites and is valuable for the development of photocatalysts.
基金supported by the Ministry of Science and ICT in Korea(2021R1A2C2009459)X-ray absorption spectra were obtained from Pohang Accelerator Laboratory(PAL)10C beamlinesupported by the US Department of Energy,Office of Science,Office of Advanced Scientific Computing Research,and Scientific Discovery through Advanced Computing(SciDAC)program under Award Number DE-SC0022209.
文摘Systematic optimization of the photocatalyst and investigation of the role of each component is important to maximizing catalytic activity and comprehending the photocatalytic conversion of CO_(2) reduction to solar fuels.A surface-modified Ag@Ru-P25 photocatalyst with H_(2)O_(2) treatment was designed in this study to convert CO_(2) and H_(2)O vapor into highly selective CH4.Ru doping followed by Ag nanoparticles(NPs)cocatalyst deposition on P25(TiO_(2))enhances visible light absorption and charge separation,whereas H_(2)O_(2) treatment modifies the surface of the photocatalyst with hydroxyl(–OH)groups and promotes CO_(2) adsorption.High-resonance transmission electron microscopy,X-ray photoelectron spectroscopy,X-ray absorption near-edge structure,and extended X-ray absorption fine structure techniques were used to analyze the surface and chemical composition of the photocatalyst,while thermogravimetric analysis,CO_(2) adsorption isotherm,and temperature programmed desorption study were performed to examine the significance of H_(2)O_(2) treatment in increasing CO_(2) reduction activity.The optimized Ag1.0@Ru1.0-P25 photocatalyst performed excellent CO_(2) reduction activity into CO,CH4,and C2H6 with a~95%selectivity of CH4,where the activity was~135 times higher than that of pristine TiO_(2)(P25).For the first time,this work explored the effect of H_(2)O_(2) treatment on the photocatalyst that dramatically increases CO_(2) reduction activity.