为保障工作人员在硫化氢(H_(2)S)泄漏工况下的生命安全,以东南部海域某高含硫油田开发工程为例,结合国内第一艘圆筒形浮式生产储油卸油装置(Floating Production Storage and Offloading,FPSO)的结构特点,设计一种适用于高含H_(2)S油气...为保障工作人员在硫化氢(H_(2)S)泄漏工况下的生命安全,以东南部海域某高含硫油田开发工程为例,结合国内第一艘圆筒形浮式生产储油卸油装置(Floating Production Storage and Offloading,FPSO)的结构特点,设计一种适用于高含H_(2)S油气田的FPSO应急空气呼吸系统。研究表明:该空气呼吸系统安全可靠、占地面积小、使用方便。研究成果可为H_(2)S防护设计提供一定参考。展开更多
Computational fuid dynamics(CFD)simulations of a single staged injection of H_(2) through a central wedge shaped strut and a multi staged injection through wall injectors are carried out by using Ansys CFX-12 code.Uns...Computational fuid dynamics(CFD)simulations of a single staged injection of H_(2) through a central wedge shaped strut and a multi staged injection through wall injectors are carried out by using Ansys CFX-12 code.Unstructured terahedral grids for narow channel and quarter geometries of the combustor are generated by using ICEM CFD.Steady three dimensional(3D)Reynods averaged Navier-stokes(RANS)simulations are carried out in the case of no H_(2) injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection.Shear stuess transport(SST)based on k-ω turbulent model is adopted.Flow field visualization(omplex shock waves interactions)and static pressure distribution along the wall of the combustor are pradicted and compared with the experimental schlieren images and measured wall static pressures for validation.A good agreement is found between the CFD predicted results and the measured data.The narow and quarter geometries of the combustor give similar results with very small differences.Multi-staged injections of H_(2) enhance the turbulent H_(2)/air mixing by fomming vortices and additional shock waves(bow shocks).展开更多
文摘为保障工作人员在硫化氢(H_(2)S)泄漏工况下的生命安全,以东南部海域某高含硫油田开发工程为例,结合国内第一艘圆筒形浮式生产储油卸油装置(Floating Production Storage and Offloading,FPSO)的结构特点,设计一种适用于高含H_(2)S油气田的FPSO应急空气呼吸系统。研究表明:该空气呼吸系统安全可靠、占地面积小、使用方便。研究成果可为H_(2)S防护设计提供一定参考。
基金The authors would like to thank the German research foundation(DFG)for their financial support for this work in the framework of the research training group GRK 1095.
文摘Computational fuid dynamics(CFD)simulations of a single staged injection of H_(2) through a central wedge shaped strut and a multi staged injection through wall injectors are carried out by using Ansys CFX-12 code.Unstructured terahedral grids for narow channel and quarter geometries of the combustor are generated by using ICEM CFD.Steady three dimensional(3D)Reynods averaged Navier-stokes(RANS)simulations are carried out in the case of no H_(2) injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection.Shear stuess transport(SST)based on k-ω turbulent model is adopted.Flow field visualization(omplex shock waves interactions)and static pressure distribution along the wall of the combustor are pradicted and compared with the experimental schlieren images and measured wall static pressures for validation.A good agreement is found between the CFD predicted results and the measured data.The narow and quarter geometries of the combustor give similar results with very small differences.Multi-staged injections of H_(2) enhance the turbulent H_(2)/air mixing by fomming vortices and additional shock waves(bow shocks).