The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(...The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.展开更多
Among the numerous transition metal catalysts,manganese-based compounds are considered as promising peroxymonosulfate(PMS)catalysts due to their low cost and environmental friendliness,such as cryptomelane manganese o...Among the numerous transition metal catalysts,manganese-based compounds are considered as promising peroxymonosulfate(PMS)catalysts due to their low cost and environmental friendliness,such as cryptomelane manganese oxide(K_(2-x)Mn_(8)O_(16):abbreviation KMnO).However,the limited catalytic performance of KMnO limits its practical application.In this work,iron-doped KMnO(Fe-KMnO)was prepared by one-step hydrothermal method to optimize its catalytic performance.Compared with KMnO/PMS system,Fe-KMnO/PMS system possessed more excellent removal efficiency of tetracycline(TC).Meanwhile,the Fe-KMnO/PMS system also exhibited good practical application potential and excellent stability.The mechanism of Fe-KMnO activation of PMS was further analyzed in detail.It was found that Fe participated in the redox of high-valent Mn,which promoted the activation of PMS.Moreover,The Fe site as an adsorption site enhanced the TC enrichment ability of the catalyst,reducing the mass transfer resistance and further enhancing the TC removal ability of Fe-KMnO/PMS system.This work not only provides an excellent PMS catalyst,but also offers new insights into the mechanism of PMS activation by bimetallic manganese-based catalysts.展开更多
文摘The development of an efficient artificial H_(2)O_(2) photosynthesis system is a challenging work using H_(2)O and O_(2) as starting materials.Herein,3D In_(2.77)S_(4) nanoflower precursor was in-situ deposited on K^(+)-doped g-C_(3)N_(4)(KCN)nanosheets using a solvothermal method,then In_(2.77)S_(4)/KCN(IS/KCN)het-erojunction with an intimate interface was obtained after a calcination process.The investigation shows that the photocatalytic H_(2)O_(2) production rate of 50IS/KCN can reach up to 1.36 mmol g^(-1)h^(-1)without any sacrificial reagents under visible light irradiation,which is 9.2 times and 4.1 times higher than that of KCN and In_(2.77)S_(4)/respectively.The enhanced activity of the above composite can be mainly attributed to the S-scheme charge transfer route between KCN and In_(2.77)S_(4) according to density functional theory calculations,electron paramagnetic resonance and free radical capture tests,leading to an expanded light response range and rapid charge separation at their interface,as well as preserving the active electrons and holes for H_(2)O_(2) production.Besides,the unique 3D nanostructure and surface hydrophobicity of IS/KCN facilitate the diffusion and transportation of O_(2) around the active centers,the energy barriers of O_(2) protonation and H_(2)O_(2) desorption steps are ef-fectively reduced over the composite.In addition,this system also exhibits excellent light harvesting ability and stability.This work provides a potential strategy to explore a sustainable H_(2)O_(2) photo-synthesis pathway through the design of heterojunctions with intimate interfaces and desired reac-tion thermodynamics and kinetics.
基金supported by the National Natural Science Foundation of China (21806115)Sichuan Science and Technology Program (2020YJ0149)+1 种基金the Power Construction of China (P42819,DJ-ZDXM-2019-42)the Supported by Sichuan Science and Technology Program (2021ZDZX0012)。
文摘Among the numerous transition metal catalysts,manganese-based compounds are considered as promising peroxymonosulfate(PMS)catalysts due to their low cost and environmental friendliness,such as cryptomelane manganese oxide(K_(2-x)Mn_(8)O_(16):abbreviation KMnO).However,the limited catalytic performance of KMnO limits its practical application.In this work,iron-doped KMnO(Fe-KMnO)was prepared by one-step hydrothermal method to optimize its catalytic performance.Compared with KMnO/PMS system,Fe-KMnO/PMS system possessed more excellent removal efficiency of tetracycline(TC).Meanwhile,the Fe-KMnO/PMS system also exhibited good practical application potential and excellent stability.The mechanism of Fe-KMnO activation of PMS was further analyzed in detail.It was found that Fe participated in the redox of high-valent Mn,which promoted the activation of PMS.Moreover,The Fe site as an adsorption site enhanced the TC enrichment ability of the catalyst,reducing the mass transfer resistance and further enhancing the TC removal ability of Fe-KMnO/PMS system.This work not only provides an excellent PMS catalyst,but also offers new insights into the mechanism of PMS activation by bimetallic manganese-based catalysts.