Nonlinear estimation problem is investigated in this paper. By extension of a linear H_∞estimation with corrector-predictor form to nonlinear cases, a new extended H_∞filter is proposed for time-varying discrete-tim...Nonlinear estimation problem is investigated in this paper. By extension of a linear H_∞estimation with corrector-predictor form to nonlinear cases, a new extended H_∞filter is proposed for time-varying discrete-time nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H_∞bound performs better than the EKF.展开更多
准确、实时地估计电池的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)是现代电池管理系统的关键任务。通过自适应H_(2)/H_(∞)滤波器可对锂电池的SOC和SOH进行联合估计。该方法基于锂电池的二阶RC等效电路模型,采用AF...准确、实时地估计电池的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)是现代电池管理系统的关键任务。通过自适应H_(2)/H_(∞)滤波器可对锂电池的SOC和SOH进行联合估计。该方法基于锂电池的二阶RC等效电路模型,采用AFFRLS法在线辨识锂电池的模型参数,并利用H_(2)/H_(∞)滤波器估计锂电池的SOC,AFFRLS辨识与H_(2)/H_(∞)滤波交替进行,得到一种自适应H_(2)/H_(∞)滤波器。SOH依据AFFRLS辨识的电池内阻进行估计,实现了锂电池SOC与SOH的联合估计。实验结果表明:自适应H_(2)/H_(∞)滤波算法的估计精度高且鲁棒性强,电池的SOC和SOH的平均估计误差始终保持在±0.19%以内,相比于EKF和H_(∞)滤波算法有更高的估计精度与稳定性。展开更多
文摘Nonlinear estimation problem is investigated in this paper. By extension of a linear H_∞estimation with corrector-predictor form to nonlinear cases, a new extended H_∞filter is proposed for time-varying discrete-time nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H_∞bound performs better than the EKF.
文摘准确、实时地估计电池的荷电状态(state of charge,SOC)和健康状态(state of health,SOH)是现代电池管理系统的关键任务。通过自适应H_(2)/H_(∞)滤波器可对锂电池的SOC和SOH进行联合估计。该方法基于锂电池的二阶RC等效电路模型,采用AFFRLS法在线辨识锂电池的模型参数,并利用H_(2)/H_(∞)滤波器估计锂电池的SOC,AFFRLS辨识与H_(2)/H_(∞)滤波交替进行,得到一种自适应H_(2)/H_(∞)滤波器。SOH依据AFFRLS辨识的电池内阻进行估计,实现了锂电池SOC与SOH的联合估计。实验结果表明:自适应H_(2)/H_(∞)滤波算法的估计精度高且鲁棒性强,电池的SOC和SOH的平均估计误差始终保持在±0.19%以内,相比于EKF和H_(∞)滤波算法有更高的估计精度与稳定性。