Pyrite is a ubiquitous authigenic mineral in modern anoxic sediments and occurs in ancient sedimentary rocks.Study of sedimentary pyrite morphology, which can provide useful information on deposition environments and ...Pyrite is a ubiquitous authigenic mineral in modern anoxic sediments and occurs in ancient sedimentary rocks.Study of sedimentary pyrite morphology, which can provide useful information on deposition environments and early diagenetic processes,has become an important aspect for reconstruction of palaeoenviroment.The Upper Cretaceous Qingshankou Formation Unit 1(K<sub>2</sub>qn<sup>1</sup>)lithology,which occured in the south well of the SLCORE I for Continental Cretaceous Scientific Drilling Project展开更多
Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis s...Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis systems vent out oxygen as unused by-product. Replacing air with pure oxygen, fuel cell electrochemical performance, durability and system efficiency can be significantly increased with a further overall system simplification and increased reliability. This work, which represents the initial step for pure H;/O;polymer electrolyte fuel cell operation in closed-loop systems, focuses on performance validation of a single cell operating with pure H;/O;under different relative humidity(RH) levels, reactants stoichiometry conditions and temperature. As a result of this study, the most convenient and appropriate operative conditions for a polymer electrolyte fuel cell stack integrated in a closed loop system were selected.展开更多
The investigation of the performance of UV/H2O2, UV/O3 and UV/H2O2/O3 oxidation systems treating spent caustic from an ethylene plant shows that in UV/H2O2 system, with the increase of H2O2dosage, removal efficiencies...The investigation of the performance of UV/H2O2, UV/O3 and UV/H2O2/O3 oxidation systems treating spent caustic from an ethylene plant shows that in UV/H2O2 system, with the increase of H2O2dosage, removal efficiencies of COD and the ratio of biochemical oxygen demand (BOD) to chemical oxygen demand (COD) of the effluent were increased and a better performance was obtained than the H2O2system alone. In UV/H2O2 system, removal efficiency of COD reached 68% under the optimum condition, and BOD/COD ratio was significantly increased from 0.22 to 0.52. In UV/O3 system, with the increase of O3dosage, removal efficiency of COD and BOD/COD ratio were increased, and a better performance was obtained than the O3system alone. Under the optimum condition, removal efficiency of COD was 54%, and BOD/COD ratio was significantly increased from 0.22 to 0.48. In UV/H2O2/O3 system, COD removal efficiency was found to be 22.0% higher than UV/O3 system.展开更多
文摘Pyrite is a ubiquitous authigenic mineral in modern anoxic sediments and occurs in ancient sedimentary rocks.Study of sedimentary pyrite morphology, which can provide useful information on deposition environments and early diagenetic processes,has become an important aspect for reconstruction of palaeoenviroment.The Upper Cretaceous Qingshankou Formation Unit 1(K<sub>2</sub>qn<sup>1</sup>)lithology,which occured in the south well of the SLCORE I for Continental Cretaceous Scientific Drilling Project
文摘Fuel cells and electrolysis are promising candidates for future energy production from renewable energy sources. Usually, polymer electrolyte fuel cell systems run on hydrogen and air, while the most of electrolysis systems vent out oxygen as unused by-product. Replacing air with pure oxygen, fuel cell electrochemical performance, durability and system efficiency can be significantly increased with a further overall system simplification and increased reliability. This work, which represents the initial step for pure H;/O;polymer electrolyte fuel cell operation in closed-loop systems, focuses on performance validation of a single cell operating with pure H;/O;under different relative humidity(RH) levels, reactants stoichiometry conditions and temperature. As a result of this study, the most convenient and appropriate operative conditions for a polymer electrolyte fuel cell stack integrated in a closed loop system were selected.
文摘The investigation of the performance of UV/H2O2, UV/O3 and UV/H2O2/O3 oxidation systems treating spent caustic from an ethylene plant shows that in UV/H2O2 system, with the increase of H2O2dosage, removal efficiencies of COD and the ratio of biochemical oxygen demand (BOD) to chemical oxygen demand (COD) of the effluent were increased and a better performance was obtained than the H2O2system alone. In UV/H2O2 system, removal efficiency of COD reached 68% under the optimum condition, and BOD/COD ratio was significantly increased from 0.22 to 0.52. In UV/O3 system, with the increase of O3dosage, removal efficiency of COD and BOD/COD ratio were increased, and a better performance was obtained than the O3system alone. Under the optimum condition, removal efficiency of COD was 54%, and BOD/COD ratio was significantly increased from 0.22 to 0.48. In UV/H2O2/O3 system, COD removal efficiency was found to be 22.0% higher than UV/O3 system.