By using the weighted versions of Journe's covering lemma and its extension to highetdimensions, this paper contributes an atomic decomposition theorem for the weighted H^p(0<p≤1)spaces on product domains, get...By using the weighted versions of Journe's covering lemma and its extension to highetdimensions, this paper contributes an atomic decomposition theorem for the weighted H^p(0<p≤1)spaces on product domains, gets a vector value for the index of the moment conditions whichextends the corresponding result in the case with one--parameter to the case with arbitrarynumber of parameters and solves the problem proposed by S. Y. A. Chang &R. Fefferman.展开更多
基金Project aupported by the National Natural Science Foundation of China.
文摘By using the weighted versions of Journe's covering lemma and its extension to highetdimensions, this paper contributes an atomic decomposition theorem for the weighted H^p(0<p≤1)spaces on product domains, gets a vector value for the index of the moment conditions whichextends the corresponding result in the case with one--parameter to the case with arbitrarynumber of parameters and solves the problem proposed by S. Y. A. Chang &R. Fefferman.