A kind of transfigured loop shaping controller is presented in this paper. A transfigured loop shaping system puts a controller K in a feedback loop, while putting the dc gain of the controller K on the reference sign...A kind of transfigured loop shaping controller is presented in this paper. A transfigured loop shaping system puts a controller K in a feedback loop, while putting the dc gain of the controller K on the reference signal line. It is shown through frequency domain analysis and simulation that a transfigured controller can improve the dynamic behavior of a system. The transfigured loop shaping controller method is simple and effective and corresponds to the mixed sensitivity method of robust control theory, which improves the behavior of a system by iterative tuning of weighting functions. Satisfactory control results are obtained when it is applied to the design of an underwater vehicle. Keywords Loop shaping controller - underwater vehicle - transfiguration Zhang Xianku graduated from Beijing Institute of Clothing Technology, China, in 1990. He received the M. S. degree from Dalian Maritime University (DMU), China, in 1993 and the Ph.D. degree from DMU, in 1998. He is currently a professor at the Laboratory of Simulation and Control of Navigation Systems, Dalian Maritime University. His research interests include ship motion control and robust control.Jin Yicheng graduated from Zhejiang University, China, in 1967. He is currently a professor at the Laboratory of Simulation and Control of Navigation Systems, Dalian Maritime University. His research interests include simulating system of ship steering and visual control.展开更多
QUEST has a divertor configuration with a high and a negative n-index, and the problem of plasma vertical position instability control in QUEST is still under extensive study for achieving high efficiency plasma. The ...QUEST has a divertor configuration with a high and a negative n-index, and the problem of plasma vertical position instability control in QUEST is still under extensive study for achieving high efficiency plasma. The instability we considered is that the toroidal plasma moves either up or down in the vacuum chamber until it meets the vessel wall and is extinguished. The actively controlled coils (HCU and HCL) outside the vacuum vessel are serially connected in feedback with a measurement of the plasma vertical position to provide stabilizing control. In this work, a robust controller is employed by using the loop synthesis method, and provides robust stability over a wide range of n-index. Moreover, the gain of the robust controller is lower than that of a typical proportional derivative (PD) controller in the operational frequency range; it indicates that the robust controller needs less power consumption than the PD controller does.展开更多
Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and swit...Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and switching nature of DC-DC power electronic converters, there is a need for high-performance control strategies. This work summarized the dynamic behavior for the three basic switch-mode DC-DC power converters operating in continuous conduction mode, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> buck, boost, and buck-boost. A controller was designed using loop-shaping based on current-mode control that consists of two feedback loops. A high-gain compensator with wide bandwidth was used in the inner current loop for fast transient response. A proportional-integral controller was used in the outer voltage loop for regulation purposes. A proce</span><span style="font-family:Verdana;">dure was proposed for the parameters of the controller that ensures closed-loop</span><span style="font-family:Verdana;"> stability and output voltage regulation. The design-oriented analysis was applied to the three basic switch-mode DC-DC power converters. Experimental results were obtained for a switching regulator with a boost converter of 150 W, which exhibits non-minimum phase behavior. The performance of the controller was tested for voltage regulation by applying large load changes.展开更多
The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on de...The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise,but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied,especially their behaviors with different electronic parameters.In this work,a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop,and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points,such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape.The bias instability changes as a consequence.With appropriate parameters settings,the 670 Hz resonant frequency accelerometer can reach resolution of 2.6 μg/(Hz)1/2 at 2 Hz and 6 μg bias instability,and 1300 Hz accelerometer can achieve 5μg/(Hz)1/2 at 2 Hz and 31 μg bias instability.Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz.展开更多
A thin metallic wire loop of arbitrary curvature is rotated with respect to an arbitrary axis of its plane. The device is excited by an electric dipole of infinite length and constant current. The resistance of the lo...A thin metallic wire loop of arbitrary curvature is rotated with respect to an arbitrary axis of its plane. The device is excited by an electric dipole of infinite length and constant current. The resistance of the loop is computed rigorously as function of the position of the source. In this way, the induced voltage along the wire, under any kind of axial excitation, is given in the form of a superposition integral. The measured response is represented for various shapes of the coil, with respect to the time, the rotation angle and the position of the source. These diagrams lead to several technically applicable conclusions which are presented, discussed and justified.展开更多
Ultra wide bands antennas with notched bands characteristics have recently been considered for efficient communication between devices. In this paper, a compact ultra-wideband antenna (UWB) for UWB applications with t...Ultra wide bands antennas with notched bands characteristics have recently been considered for efficient communication between devices. In this paper, a compact ultra-wideband antenna (UWB) for UWB applications with triple bandnotched characteristics is presented. The proposed antenna consists of a square patch with four truncated corners and a partial ground plane with a rectangular slit. The operation bandwidth of the designed antenna is from 2.66 GHz to more than 13.5 GHz. Band-notched characteristics of antenna to reject the frequency band of 3.18 - 3.59 GHz and 4.70 - 5.88 GHz, is realized by inserting two C-shaped slots in the patch, the third band of 9.54 - 12.22 GHz is achieved by slottype capacitively-loaded loop (CLL) inserted in the patch near the feed line. Details of the proposed antenna design and simulated results are presented and discussed.展开更多
This paper discusses robust control strategy for isopropyl benzene production process using the method of loop shaping H_(∞) technology.This cumene production process is a part of phenol plant in HOCL,Kochi.H_(∞) co...This paper discusses robust control strategy for isopropyl benzene production process using the method of loop shaping H_(∞) technology.This cumene production process is a part of phenol plant in HOCL,Kochi.H_(∞) control of the propylene concentration is done here.The H_(∞) controller is derived from the linearised model of the reactor.The optimal H_(∞) controller is obtained by simplifying two algebraic Riccati equations.The proposed PID-like H_(∞) controller provides a single tuning parameter which makes the controller design more accurate.The proposed controller has been compared with other robust controllers like H_(2) and LQR.The H_(∞) controller is found to be superior in a wide frequency range and has a feature of low distortion and good regulating performance.The reactor model has been developed in COMSOL Multiphysics with the parameters obtained from HOCL plant,Kochi.The model extracted is reduced using model order reduction for the controller design.展开更多
The effects of funnel-shape internals on hydrodynamics and mass transfer in an internal loop three-phase fluidized bed were investigated.Three different kinds of internals were designed which were setup on the top of ...The effects of funnel-shape internals on hydrodynamics and mass transfer in an internal loop three-phase fluidized bed were investigated.Three different kinds of internals were designed which were setup on the top of draft-tube in terms of horizontal angle and outer diameter, and gas hold up, liquid mixing time, liquid circulation velocity and mass transfer coefficient were measured respectively.It was shown that the riser gas holdup and mass transfer coefficient increased by 10% and 15% than that without such an internal, liquid mixing time decreased by 10% to 25%.When the superficial gas velocity was less than 0.5 cm·s-1, liquid circulation velocity increased with the setup of such internals·Liquid circulation velocity decreased when the superficial gas velocity was above 0.5 cm·s-1.In addition, the variation of structural parameters of funnel-shape internals had significant effects on hydrodynamics and mass transfer.展开更多
文摘A kind of transfigured loop shaping controller is presented in this paper. A transfigured loop shaping system puts a controller K in a feedback loop, while putting the dc gain of the controller K on the reference signal line. It is shown through frequency domain analysis and simulation that a transfigured controller can improve the dynamic behavior of a system. The transfigured loop shaping controller method is simple and effective and corresponds to the mixed sensitivity method of robust control theory, which improves the behavior of a system by iterative tuning of weighting functions. Satisfactory control results are obtained when it is applied to the design of an underwater vehicle. Keywords Loop shaping controller - underwater vehicle - transfiguration Zhang Xianku graduated from Beijing Institute of Clothing Technology, China, in 1990. He received the M. S. degree from Dalian Maritime University (DMU), China, in 1993 and the Ph.D. degree from DMU, in 1998. He is currently a professor at the Laboratory of Simulation and Control of Navigation Systems, Dalian Maritime University. His research interests include ship motion control and robust control.Jin Yicheng graduated from Zhejiang University, China, in 1967. He is currently a professor at the Laboratory of Simulation and Control of Navigation Systems, Dalian Maritime University. His research interests include simulating system of ship steering and visual control.
文摘QUEST has a divertor configuration with a high and a negative n-index, and the problem of plasma vertical position instability control in QUEST is still under extensive study for achieving high efficiency plasma. The instability we considered is that the toroidal plasma moves either up or down in the vacuum chamber until it meets the vessel wall and is extinguished. The actively controlled coils (HCU and HCL) outside the vacuum vessel are serially connected in feedback with a measurement of the plasma vertical position to provide stabilizing control. In this work, a robust controller is employed by using the loop synthesis method, and provides robust stability over a wide range of n-index. Moreover, the gain of the robust controller is lower than that of a typical proportional derivative (PD) controller in the operational frequency range; it indicates that the robust controller needs less power consumption than the PD controller does.
文摘Renewable energy sources require switching regulators as an interface to a load with high efficiency, small size, proper output regulation, and fast transient response. Moreover, due to the nonlinear behavior and switching nature of DC-DC power electronic converters, there is a need for high-performance control strategies. This work summarized the dynamic behavior for the three basic switch-mode DC-DC power converters operating in continuous conduction mode, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> buck, boost, and buck-boost. A controller was designed using loop-shaping based on current-mode control that consists of two feedback loops. A high-gain compensator with wide bandwidth was used in the inner current loop for fast transient response. A proportional-integral controller was used in the outer voltage loop for regulation purposes. A proce</span><span style="font-family:Verdana;">dure was proposed for the parameters of the controller that ensures closed-loop</span><span style="font-family:Verdana;"> stability and output voltage regulation. The design-oriented analysis was applied to the three basic switch-mode DC-DC power converters. Experimental results were obtained for a switching regulator with a boost converter of 150 W, which exhibits non-minimum phase behavior. The performance of the controller was tested for voltage regulation by applying large load changes.
基金Project(61404122)supported by the National Natural Science Foundation of China
文摘The noise of closed loop micro-electromechanical systems(MEMS) capacitive accelerometer is treated as one of the significant performance specifications.Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise,but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied,especially their behaviors with different electronic parameters.In this work,a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop,and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points,such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape.The bias instability changes as a consequence.With appropriate parameters settings,the 670 Hz resonant frequency accelerometer can reach resolution of 2.6 μg/(Hz)1/2 at 2 Hz and 6 μg bias instability,and 1300 Hz accelerometer can achieve 5μg/(Hz)1/2 at 2 Hz and 31 μg bias instability.Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz.
文摘A thin metallic wire loop of arbitrary curvature is rotated with respect to an arbitrary axis of its plane. The device is excited by an electric dipole of infinite length and constant current. The resistance of the loop is computed rigorously as function of the position of the source. In this way, the induced voltage along the wire, under any kind of axial excitation, is given in the form of a superposition integral. The measured response is represented for various shapes of the coil, with respect to the time, the rotation angle and the position of the source. These diagrams lead to several technically applicable conclusions which are presented, discussed and justified.
文摘Ultra wide bands antennas with notched bands characteristics have recently been considered for efficient communication between devices. In this paper, a compact ultra-wideband antenna (UWB) for UWB applications with triple bandnotched characteristics is presented. The proposed antenna consists of a square patch with four truncated corners and a partial ground plane with a rectangular slit. The operation bandwidth of the designed antenna is from 2.66 GHz to more than 13.5 GHz. Band-notched characteristics of antenna to reject the frequency band of 3.18 - 3.59 GHz and 4.70 - 5.88 GHz, is realized by inserting two C-shaped slots in the patch, the third band of 9.54 - 12.22 GHz is achieved by slottype capacitively-loaded loop (CLL) inserted in the patch near the feed line. Details of the proposed antenna design and simulated results are presented and discussed.
文摘This paper discusses robust control strategy for isopropyl benzene production process using the method of loop shaping H_(∞) technology.This cumene production process is a part of phenol plant in HOCL,Kochi.H_(∞) control of the propylene concentration is done here.The H_(∞) controller is derived from the linearised model of the reactor.The optimal H_(∞) controller is obtained by simplifying two algebraic Riccati equations.The proposed PID-like H_(∞) controller provides a single tuning parameter which makes the controller design more accurate.The proposed controller has been compared with other robust controllers like H_(2) and LQR.The H_(∞) controller is found to be superior in a wide frequency range and has a feature of low distortion and good regulating performance.The reactor model has been developed in COMSOL Multiphysics with the parameters obtained from HOCL plant,Kochi.The model extracted is reduced using model order reduction for the controller design.
文摘The effects of funnel-shape internals on hydrodynamics and mass transfer in an internal loop three-phase fluidized bed were investigated.Three different kinds of internals were designed which were setup on the top of draft-tube in terms of horizontal angle and outer diameter, and gas hold up, liquid mixing time, liquid circulation velocity and mass transfer coefficient were measured respectively.It was shown that the riser gas holdup and mass transfer coefficient increased by 10% and 15% than that without such an internal, liquid mixing time decreased by 10% to 25%.When the superficial gas velocity was less than 0.5 cm·s-1, liquid circulation velocity increased with the setup of such internals·Liquid circulation velocity decreased when the superficial gas velocity was above 0.5 cm·s-1.In addition, the variation of structural parameters of funnel-shape internals had significant effects on hydrodynamics and mass transfer.