期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
APPLICATION EXPERIMENT OF ASSIMILATING RADAR-RETRIEVED WATER VAPOR IN SHORT-RANGE FORECAST OF RAINFALL IN THE ANNUALLY FIRST RAINY SEASON OVER SOUTH CHINA 被引量:2
1
作者 张诚忠 陈子通 +4 位作者 万齐林 林振敏 黄燕燕 戴光丰 丁伟钰 《Journal of Tropical Meteorology》 SCIE 2016年第4期578-588,共11页
A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimila... A scheme of assimilating radar-retrieved water vapor is adopted to improve the quality of NWP initial field for improvement of the accuracy of short-range precipitation prediction. To reveal the impact of the assimilation of radar-retrieved water vapor on short-term precipitation forecast, three parallel experiments, cold start, hot start and hot start plus the assimilation of radar-retrieved water vapor, are designed to simulate the 31 days of May, 2013 with a fine numerical model for South China. Furthermore, a case of heavy rain that occurred from 8-9 May 2013 over the region from the southwest of Guangdong province to Pearl River Delta is analyzed in detail. Results show that the cold start experiment is not conducive to precipitation 12 hours ahead; the hot start experiment is able to reproduce well the first6 hours of precipitation, but badly for subsequent prediction; the experiment of assimilating radar-retrieved water vapor is not only able to simulate well the precipitation 6 hours ahead, but also able to correctly predict the evolution of rain bands from 6 to 12 hours in advance. 展开更多
关键词 radar-retrieved water vapor RAINFALL in annually FIRST RAINY season short-range forecast data assimilation
下载PDF
A Regional Ensemble Forecast System for Stratiform Precipitation Events in the Northern China Region.Part Ⅱ:Seasonal Evaluation for Summer 2010 被引量:8
2
作者 朱江山 孔凡铀 雷恒池 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第1期15-28,共14页
In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer ... In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer season of 2010. The verification results show that IAP-REFS is skillful for quantitative precipitation forecasts (QPF) and probabilistic QPF, but it has a systematic bias in forecasting near-surface variables. Applying a 7-day running mean bias correction to the forecasts of near-surface variables remarkably improved the reliability of the forecasts. In this study, the perturbation extraction and inflation method (proposed with the single case study in Part I) was further applied to the full season with different inflation factors. This method increased the ensemble spread and improved the accuracy of forecasts of precipitation and near-surface variables. The seasonal mean profiles of the IAP-REFS ensemble indicate good spread among ensemble members and some model biases at certain vertical levels. 展开更多
关键词 short-range ensemble forecast rain enhancement operation probabilistic forecast
下载PDF
A Regional Ensemble Forecast System for Stratiform Precipitation Events in Northern China.Part I:A Case Study 被引量:7
3
作者 朱江山 Fanyou KONG 雷恒池 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第1期201-216,共16页
A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple... A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple lateral boundary conditions, and multiple physics parameterizations with 11 ensemble members, was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China. This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework. The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts, and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region. Experiments on an actual stratiform precipitation case that occurred on 5-7 June 2009 in northern China were conducted to validate the ensemble system. The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system. The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts. Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF). However, the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables, and its influence on PQPF resolution was limited as well. 展开更多
关键词 short-range ensemble forecast rain enhancement operation probabilistic forecast
下载PDF
Satellite-based Observational Study of the Tibetan Plateau Vortex:Features of Deep Convective Cloud Tops 被引量:4
4
作者 Yi-Xuan SHOU Feng LU +3 位作者 Hui LIU Peng CUI Shaowen SHOU Jian LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第2期189-205,248,共18页
In this study, an east-moving Tibetan Plateau vortex(TPV) is analyzed by using the ERA-5 reanalysis and multi-source satellite data, including FengYun-2 E, Aqua/MODIS and CALIPSO. The objective is to demonstrate:(i) t... In this study, an east-moving Tibetan Plateau vortex(TPV) is analyzed by using the ERA-5 reanalysis and multi-source satellite data, including FengYun-2 E, Aqua/MODIS and CALIPSO. The objective is to demonstrate:(i) the usefulness of multi-spectral satellite observations in understanding the evolution of a TPV and the associated rainfall, and(ii) the potential significance of cloud-top quantitative information in improving Southwest China weather forecasts. Results in this study show that the heavy rainfall is caused by the coupling of an east-moving TPV and some low-level weather systems [a Plateau shear line and a Southwest Vortex(SWV)], wherein the TPV is a key component. During the TPV's life cycle, the rainfall and vortex intensity maintain a significant positive correlation with the convective cloud-top fraction and height within a 2.5?radius away from its center. Moreover, its growth is found to be quite sensitive to the cloud phases and particle sizes. In the mature stage when the TPV is coupled with an SWV, an increase of small ice crystal particles and appearance of ring-and U/V-shaped cold cloud-top structures can be seen as the signature of a stronger convection and rainfall enhancement within the TPV. A tropopause folding caused by ageostrophic flows at the upper level may be a key factor in the formation of ring-shaped and U/V-shaped cloud-top structures. Based on these results, we believe that the supplementary quantitative information of an east-moving TPV cloud top collected by multi-spectral satellite observations could help to improve Southwest China short-range/nowcasting weather forecasts. 展开更多
关键词 Tibetan Plateau VORTEX multi-spectral SATELLITE observations short-range/nowcasting weather forecasts cold U/V-shaped cloud top TROPOPAUSE folding
下载PDF
Development of 1km-Scale Operational Model in South China 被引量:1
5
作者 陈子通 戴光丰 +2 位作者 吴凯昕 钟水新 徐道生 《Journal of Tropical Meteorology》 SCIE 2021年第4期319-329,共11页
To support short-range weather forecasts,a high-resolution model(1km)is developed and technically upgraded in the South China Regional Center,including the improvement of the 3D reference scheme and the predictor-corr... To support short-range weather forecasts,a high-resolution model(1km)is developed and technically upgraded in the South China Regional Center,including the improvement of the 3D reference scheme and the predictor-corrector method for semi-implicit semi-Lagrangian(SISL)in model dynamical core,as well as the improvement of physical parameterization.Furthermore,the multi-process parallel I/O and parallel nudging techniques are developed and have facilitated rapid updating in the assimilation prediction system and fast-output post processing process.The experimental results show that the improved 3D reference scheme and upgraded physic schemes can effectively improve the prediction accuracy and stability with a longer integration time step.The batch test shows that the precipitation forecast performance of 1-km model is significantly better than that of 3-km model.The 1-km model is in operation with a rapidly updating cycle at 12-minute intervals,which can be applied to short-range forecasts and nowcasting. 展开更多
关键词 numerical weather prediction reference atmosphere semi-implicit semi-Lagrangian rapidly updating cycle short-range forecast
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部