期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Mechanoelectrical Coupling Model of Neurons under Stretching
1
作者 Jin Tian Guoyou Huang +4 位作者 Min Lin Jinbin Qiu Baoyong Sha Tian Jian Lu Feng Xu 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期171-172,共2页
Introduction Neurons are situated in a microenvironment composed of various biochemical and biophysical cues,where stretching is thought to have a major impact on neurons.For instance,during a moderate traumatic brain... Introduction Neurons are situated in a microenvironment composed of various biochemical and biophysical cues,where stretching is thought to have a major impact on neurons.For instance,during a moderate traumatic brain impact,the injury region in axons exhibits significant longitudinal strain;and in a rat model of spinal cord injury,the most severe axonal injury is located in the largest strain region.Stretching may result in microstructural changes in neural tissue and further leading to abnormal electrophysiological function.Hence,it is of great importance to understand the coupled mechanoelectricalbehaviors of neurons under stretching.In spite of significant experimental efforts,the underlying mechanism remains elusive,more works are needed to provide a detailed description of the process that leads to the observed phenomena.Mathematical modeling is a powerful tool that offers a quantitative description of the underlying mechanism of an observed biological phenomenon,including mechanical and electrophysiological behaviors of neurons.Thus,we developed a mechanoelectrical coupling model of neurons under stretching in this study.Mathematical model The mathematical model consists of three submodels,i.e.,the mechanical submodel,the mechanoelectrical coupling submodel and the electrophysiological submodel.The mechanical submodel deals with the relationship between stretching and the deformation of axons,which has specially considered the plastic deformation of axons.The electrophysiological submodel characterizes the feature of neuronal action potential(AP),which is based on the classical H-H model and the cable theory.The mechanoelectrical coupling submodel links the mechanical and electrophysiological submodels through strain-induced equivalent circuit parameter alteration and ion channel injury.Besides,we have discussed a more general deformation condition,where an expanded model coupling the axonal deformation and electrophysiology alteration was explored.As the most essential parameters in an electrophysiological assessment,the amplitude of the AP,the neuronal firing frequency and the electrophysiological signal conduction velocity,which could be affected by stretching,were used as outputs of the model.Results&discussion To understand the mechanoelectrical coupling of neurons under stretching,we developed a mechanoelectrical coupling model.To verify the model,we simulated a slow stretching on an axon following the experimental study in the literature,we observed that as the strain increases,the peak AP declines faster,which is consistent with the experimental data.Moreover,the reduced AP cannot be restored to the original peak,implying that the damage is irreversible.The simulation results also predict that strain induces a more frequent neuronal firing and a faster conduction.In a realistic situation,in addition to stretching,the loading condition is very complicated,which may induce complex axonal deformation(e.g., necking and swelling along the axons).We also simulated such necking deformation impairment and observed that the AP amplitude decreases at the necking region and recovers after that,indicating a blockage of the AP;and the conduction velocity decreases with the increase in deformation degree.Conclusions In this study,we developed a mechanoelectrical coupling model of neurons under stretching with consideration of axonal plastic deformation.With the model,we found that the effect of mechanical loading on electrophysiology mainly manifests as decreased membrane AP amplitude,a more frequent neuronal firing and a faster electrophysiological signal conduction.The model predicts not only stretch-induced injury but also a more gene ral necking deformation case,which may someday be revealed in future by experiments,providing a reference for the prediction and regulation of neuronal function under mechanical loadings. 展开更多
关键词 BIOMECHANICS ELECTROPHYSIOLOGY h-h model cable theory NEURONAL injury
下载PDF
热处理毛竹材吸湿与解吸特性 被引量:7
2
作者 雷文成 张亚梅 +1 位作者 于文吉 余养伦 《林业工程学报》 CSCD 北大核心 2021年第3期41-46,共6页
热处理作为一种绿色环保的物理改性方法,已经在木、竹材企业得到广泛应用。竹材在180℃热处理时,其力学性能损失较小,尺寸稳定性能得到较好的改善。为揭示热处理对竹材吸湿解吸特性的影响,选择180℃对毛竹进行处理,并利用动态水分吸附... 热处理作为一种绿色环保的物理改性方法,已经在木、竹材企业得到广泛应用。竹材在180℃热处理时,其力学性能损失较小,尺寸稳定性能得到较好的改善。为揭示热处理对竹材吸湿解吸特性的影响,选择180℃对毛竹进行处理,并利用动态水分吸附分析仪(DVS)测试了热处理前后竹材在温度为25℃和相对湿度为5%-90%-5%条件下的等温吸附曲线。在上述试验的基础上,采用Guggenheim-Anderson-deBoer(GAB)和Hailwood-Horrobin(H-H)2种模型对试验数据进行了拟合分析。结果表明:与原竹相比,热处理竹材的平衡含水率降低;GAB模型分析结果显示,热处理降低了竹材的单分子层水吸附能力,但没有改变表面水分子与吸附点位之间的相互作用;H-H模型分析结果显示,热处理后竹材单分子层和多分子层的吸附水含量降低,而单分子层/多分子层的吸附水比例增大;傅里叶红外分析结果显示,热处理竹材的化学成分降解,亲水性官能团的含量减少。热处理后竹材中化学成分的变化是竹材吸湿和解吸特性变化的主要因素。 展开更多
关键词 热处理 毛竹 吸湿 解吸 Guggenheim-Anderson-deBoer(GAB)模型 hailwood-horrobin(h-h)模型
下载PDF
水煮处理竹材的吸湿性和化学成分研究 被引量:3
3
作者 李澍农 张亚梅 +1 位作者 余养伦 于文吉 《林业科学》 EI CAS CSCD 北大核心 2022年第1期119-126,共8页
【目的】研究水煮处理对竹材吸湿性和化学成分的影响,为竹材改性提供技术参考。【方法】将竹片置于100℃沸水中(竹片和水的质量比为1∶100)水煮处理4 h,利用动态水分吸附仪(DVS)测试水煮处理前后竹材动态水分吸附曲线,采用Hailwood-Horr... 【目的】研究水煮处理对竹材吸湿性和化学成分的影响,为竹材改性提供技术参考。【方法】将竹片置于100℃沸水中(竹片和水的质量比为1∶100)水煮处理4 h,利用动态水分吸附仪(DVS)测试水煮处理前后竹材动态水分吸附曲线,采用Hailwood-Horrobin(H-H)模型对测试数据进行拟合,通过扫描电镜(SEM)、化学成分测试、傅里叶变换红外光谱(FTIR)、X射线光电子能谱仪(XPS)和X射线衍射仪(XRD)等手段分析水煮处理前后竹材的微观形貌、化学成分和结晶区参数。【结果】竹材经水煮处理后,在相对湿度大于50%的环境中,其平衡含水率相对于原竹对照样降低。H-H模型拟合显示,当相对湿度大于35%时,水煮处理竹材的单分子层水含量增加,多分子层水含量显著降低。扫描电镜(SEM)结果表明,水煮处理后竹材薄壁细胞细胞壁发生皱缩现象,细胞壁上微孔减少,多分子层水含量降低。化学组分分析显示,水煮处理使竹材中部分半纤维素发生降解。FTIR分析显示,水煮处理竹材的羟基和羰基含量增多,是其单分子层水含量增多的主要原因。XPS分析显示,水煮处理使竹材中半纤维素发生降解,同时脂肪酸、脂肪、酚类等物质随水分迁移到竹材表面。XRD分析显示,水煮处理主要影响竹材的非结晶区域,结晶区宽度增大;半纤维素降解使竹材结晶度增大。【结论】竹材在沸水中水煮处理4 h后,其吸湿性相对于原竹对照样降低,尺寸稳定性得到改善,水煮处理竹材微观形貌和化学成分变化是使其吸湿性降低的主要因素。 展开更多
关键词 毛竹 水煮处理 动态水分吸附 hailwood-horrobin(h-h)模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部