期刊文献+
共找到7,556篇文章
< 1 2 250 >
每页显示 20 50 100
Toward understanding the microstructure characteristics,phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets 被引量:1
1
作者 Bo Yao Nan Kang +6 位作者 Xiangyu Li Dou Li Mohamed EL Mansori Jing Chen Haiou Yang Hua Tan Xin Lin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期277-294,共18页
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue... Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder. 展开更多
关键词 laser additive manufacturing(LAM) Nd-Fe-B permanent magnets numerical simulation microstructure magnetic properties
下载PDF
Effect of In doping on the evolution of microstructure,magnetic properties and corrosion resistance of NdFeB magnets
2
作者 李豫豪 范晓东 +8 位作者 贾智 范璐 丁广飞 刘新才 郭帅 郑波 曹帅 陈仁杰 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期623-629,共7页
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga... The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets. 展开更多
关键词 In-doping NdFeB magnets magnetic properties corrosion resistance
下载PDF
Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
3
作者 何诗悦 刘若水 +3 位作者 刘煦婕 叶先平 王利晨 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期480-486,共7页
Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties o... Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties of W-type barium ferrites,single-phase BaMe_(2)Fe_(16)O_(27)(Me=Fe,Mn,Zn,Ni,Co) with different Me ions were synthesized by the high-temperature solid-state method.The saturation magnetization(Ms) range from 47.77 emu/g to 95.34 emu/g and the magnetic anisotropy field(H_a) range from 10700.60 Oe(1 Oe=79.5775 A·m^(-1)) to 13739.57 Oe,depending on the type of cation substitution in the hexagonal lattice.The dielectric permittivity and dielectric loss decrease with increasing frequency of the AC electric field in the low-frequency region,while they almost remain constant in the high-frequency region.The charac teristics of easy regulation and preparation make it a potential candidate for use in microwave device applications. 展开更多
关键词 W-type hexaferrite Raman spectra magnetic properties dielectric properties
下载PDF
First‑principles study on electronic structure,optical and magnetic properties of rare earth elements X(X=Sc,Y,La,Ce,Eu)doped with two‑dimensional GaSe
4
作者 QIU Shenhao XIAO Qingquan +1 位作者 TANG Huazhu XIE Quan 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第11期2250-2258,共9页
The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity funct... The electronic structure,magnetic,and optical properties of two-dimensional(2D)GaSe doped with rare earth elements X(X=Sc,Y,La,Ce,Eu)were calculated using the first-principles plane wave method based on den-sity functional theory.The results show that intrinsic 2D GaSe is a p-type nonmagnetic semiconductor with an indi-rect bandgap of 2.6611 eV.The spin-up and spin-down channels of Sc-,Y-,and La-doped 2D GaSe are symmetric,they are non-magnetic semiconductors.The magnetic moments of Ce-and Eu-doped 2D GaSe are 0.908μ_(B)and 7.163μ_(B),which are magnetic semiconductors.Impurity energy levels appear in both spin-up and spin-down chan-nels of Eu-doped 2D GaSe,which enhances the probability of electron transition.Compared with intrinsic 2D GaSe,the static dielectric constant of the doped 2D GaSe increases,and the polarization ability is strengthened.The ab-sorption spectrum of the doped 2D GaSe shifts in the low-energy direction,and the red-shift phenomenon occurs,which extends the absorption spectral range.The optical reflection coefficient of the doped 2D GaSe is improved in the low energy region,and the improvement of Eu-doped 2D GaSe is the most obvious. 展开更多
关键词 first principle two-dimensional GaSe electronic structure magnetic property optical property
下载PDF
Magnetic and electrical transport properties in GdAlSi and SmAlGe
5
作者 巩静 王欢 +5 位作者 马小平 曾祥雨 林浚发 韩坤 王乙婷 夏天龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期554-560,共7页
We conduct a detailed examination of the magnetic and electrical transport properties in GdAlSi and SmAlGe crystals,which possess a LaPtSi-type structure(space group I4_(1)md).The magnetic susceptibility data unambigu... We conduct a detailed examination of the magnetic and electrical transport properties in GdAlSi and SmAlGe crystals,which possess a LaPtSi-type structure(space group I4_(1)md).The magnetic susceptibility data unambiguously reveal magnetic ordering below a characteristic transition temperature(T_(N)).For GdAlSi,a hysteresis loop is observed in the magnetization and magnetoresistance curves within the ab plane when the magnetic field is applied below T_(N),which is around32 K.Notable specific heat anomalies are detected at 32 K for GdAlSi and 6 K for SmAlGe,confirming the occurrence of magnetic transitions.In addition,the extracted magnetic entropy at high temperatures is consistent with the theoretical value of Rln(2J+1) for J=7/2 in Gd^(3+) and J=5/2 in Sm^(3+),respectively.SmAlGe also exhibits Schottky-like specific heat contributions.Additionally,both GdAlSi and SmAlGe exhibit positive magnetoresistance and a normal Hall effect. 展开更多
关键词 crystal growth magnetISM magnetotransport properties specific heat
下载PDF
Impact of Co^(2+)substitution on structure and magnetic properties of M-type strontium ferrite with different Fe/Sr ratios
6
作者 Yang Sun Ruoshui Liu +1 位作者 Huayang Gong Baogen Shen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期427-433,共7页
Ion substitution has significantly improved the performance of ferrite magnets,and cobalt remains a key area of research.Studies on the mechanism of Co^(2+)in strontium ferrite,especially SrFe_(2n-x)Co_(x)O_(19-d)(n=6... Ion substitution has significantly improved the performance of ferrite magnets,and cobalt remains a key area of research.Studies on the mechanism of Co^(2+)in strontium ferrite,especially SrFe_(2n-x)Co_(x)O_(19-d)(n=6.1-5.4;x=0.05-0.20)synthesized using the ceramic method,showed that Co^(2+)preferentially enters the lattice as the Fe/Sr ratio decreases.This results in a decrease in the lattice constants a and c due to oxygen vacancies and iron ion deficiency.The impact of Co substitution on morphology is minor compared to the effect of the Fe/Sr ratio.As the Fe/Sr ratio decreases and the Co content increases,the saturation magnetization decreases.The magnetic anisotropy field exhibits a nonlinear change,generally increasing with higher Fe/Sr ratios and Co content.These changes in the performance of permanent magnets are attributed to the absence of Fe^(3+)ions at the 12k+2a and 2b sites and the substitution of Co^(2+)at the 2b site.This suggests that by adjusting the Fe/Sr ratio and appropriate Co substitution,the magnetic anisotropy field of M-type strontium ferrite can be effectively optimized. 展开更多
关键词 HEXAFERRITE Co substitution Raman spectra magnetic properties
下载PDF
Enhanced soft magnetic properties of SiO_(2)-coated FeSiCr magnetic powder cores by particle size effect
7
作者 Mingyue Ge Likang Xiao +6 位作者 Xiaoru Liu Lin Pan Zhangyang Zhou Jianghe Lan Zhengwei Xiong Jichuan Wu Zhipeng Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期405-412,共8页
It has been known that metal FeSiCr powders with large average particle sizes have been typically employed to prepare magnetic powder cores(SMCs),with few studies reported on the influence of magnetic properties for o... It has been known that metal FeSiCr powders with large average particle sizes have been typically employed to prepare magnetic powder cores(SMCs),with few studies reported on the influence of magnetic properties for original powders with various average particle sizes less than 10m.In this work,SiO_(2)-coated FeSiCr SMCs with different small particle sizes were synthesized using the sol-gel process.The contribution of SiO_(2)coating amount and voids to the soft magnetic properties was elaborated.The mechanism was revealed such that smaller particle sizes with less voids could be beneficial for reducing core loss in the SMCs.By optimizing the core structure,permeability and magnetic loss of 26 and 262 kW/cm^(3)at 100 kHz and 50 mT were achieved at a particle size of 4.8m and ethyl orthosilicate addition of 0.1 mL/g.The best DC stacking performance,reaching 87%,was observed at an ethyl orthosilicate addition rate of 0.25 mL/g under 100 Oe.Compared to other soft magnetic composites(SMCs),the FeSiCr/SiO_(2)SMCs exhibit significantly reduced magnetic loss.It further reduces the magnetic loss of the powder core,providing a new strategy for applications of SMCs at high frequencies. 展开更多
关键词 FeSiCr SiO_(2) size effect magnetic properties DC superposition
下载PDF
Angular and planar transport properties of antiferromagnetic V_(5)S_(8)
8
作者 吴晓凯 王彬 +4 位作者 吴德桐 陈博文 弭孟娟 王以林 沈冰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期66-71,共6页
Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared... Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices. 展开更多
关键词 ANTIFERROmagnetISM planar Hall effect magnetic and topological properties
下载PDF
Effect of Y element on atomic structure, glass forming ability,and magnetic properties of FeBC alloy
9
作者 肖晋桦 丁大伟 +3 位作者 李琳 孙奕韬 李茂枝 汪卫华 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期440-446,共7页
The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-f... The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe_(86-x)Y_xB_7C_7(x = 0, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property,and providing valuable insights for enhancing the performance of metallic glasses in industrial applications. 展开更多
关键词 Fe-based amorphous alloy ab initio molecular dynamic simulation glass-forming ability magnetic properties
下载PDF
Phase structure evolution and its effect on magnetic and mechanical properties of B-doped Sm_(2)Co_(17)-type magnets with high Fe content
10
作者 Yao-Wen Li Zhuang Liu +8 位作者 Hai-Chen Wu Fang Wang Chao-Qun Zhu Dong-Liang Tan Yu Liu Yang Yang Ming-Xiao Zhang Ren-Jie Chen A-Ru Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期582-588,共7页
The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and me... The unique cellular microstructure of Fe-rich Sm_(2)Co_(17)-type permanent magnets is closely associated with the structure of the solid solution precursor.We investigate the phase structure,magnetic properties,and mechanical behavior of B-doped Sm_(2)Co_(17)-type magnets with high Fe content.The doped B atoms can diffuse into the interstitial vacancy,resulting in lattice expansion and promote the homogenization of the phase organizational structure during the solid solution treatment in theory.However,the resulting second phase plays a dominant role to result in more microtwin structures and highly ordered 2:17R phases in the solid solution stage,which inhibits the ordering transformation of 1:7H phase during aging and affects the generation of the cellular structure,and to result in a decrease in magnetic properties,yet the interface formed between it and the matrix phase hinders the movement of dislocations and enhances the mechanical properties.Hence,the precipitation of high flexural strain grain boundary phase induced by B element doping is also a new and effective way to improve the flexural strain of Sm_(2)Co_(17)-type magnets.Our study provides a new understanding of the phase structure evolution and its effect on the magnetic and mechanical properties of Sm_(2)Co_(17)-type magnets with high Fe content. 展开更多
关键词 Sm_(2)Co_(17)-type magnets magnetic and mechanical properties
下载PDF
First Principle Study on the Magnetic and Electric Properties of Wurtzite Cr-phosphides and Cr-sulphides: Several Half-metallic Ferromagnets
11
作者 刘俊 陈培达 +2 位作者 陈立 董会宁 郑瑞伦 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第4期397-401,I0001,共6页
The geometrical structures of wurtzite CrX (X=As, Sb, O, Se, and Te) were optimized, then their electric and magnetic properties were investigated by the first-principle calculations within the generalized gradient ... The geometrical structures of wurtzite CrX (X=As, Sb, O, Se, and Te) were optimized, then their electric and magnetic properties were investigated by the first-principle calculations within the generalized gradient approximation for the exchange-correlation functional based on the density functional theory. These Cr-phosphides and Cr-sulphides were predicted to be half-metallic ferromagnets whose spin-polarization at the Fermi level is absolutely 100%. The molecular magnetic moments of Cr-phosphides and Cr-sulphides are 3.00 and 4.00 μB, which arise mainly from Cr-ions, respectively. There is ferromagnetic coupling in both Cr- phosphides and Cr-sulphides. The Curie temperatures of Cr-sulphides and Cr-phosphides are high. The electronic structures of Cr-ions are a1g^2↑↓t1u^4↑↓t1u^1↑↓eg^2↑↓in Cr-phosphides and a1g^2↑↓t1u^4↑↓t1u^1↑t2g^3↑in Cr-sulphides, respectively. 展开更多
关键词 half-metallic ferromagnet Electric and magnetic property Molecular magnetic moment
下载PDF
Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
12
作者 范凤国 段林彤 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期589-595,共7页
The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biom... The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control. 展开更多
关键词 nanoparticle film deformation magnetic properties flexible substrates
下载PDF
Magnetic properties of several potential rocksalt half-metallic ferromagnets based on the first-principles calculations 被引量:1
13
作者 刘俊 詹瑞 +1 位作者 李丽 董会宁 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期351-355,共5页
Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their ma... Several rocksalt Sr4X3N (X = O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their magnetic properties, such as the half metallicity and the crystal-cell magnetic moments are investigated. The Sr4X3N possibly have higher Curie temperatures and have more stable half metallicity than the Sr4X3C. Their crystal-cell magnetic moments are all 1.00 μB. The crystal-cell magnetic moments and the half metallicity arise mainly from the N ions. The main mechanism is the strong covalent interaction leading to the sp2 hybridized orbitals in the Sr4X3N. Then two Sr-5s and three N-2p electrons enter into three sp2 hybridized orbitals. Among these five electrons, four electrons are paired and one is unpaired, so there are three spin-up electrons and two spin-down electrons in these sp2 hybridized orbitals. 展开更多
关键词 half-metallic ferromagnets first-principles calculations crystal-cell magnetic moments
下载PDF
Investigations of the half-metallic behavior and the magnetic and thermodynamic properties of half-Heusler CoMnTe and RuMnTe compounds: A first-principles study
14
作者 T.Djaafri A.Djaafri +5 位作者 A.Elias G.Murtaza R.Khenata R.Ahmed S.Bin Omran D.Rached 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期444-451,共8页
First-principles spin-polarized density functional theory (DFT) investigations of the structural, electronic, magnetic, and thermodynamics characteristics of the half-Heusler, CoMnTe and RuMnTe compounds are carried... First-principles spin-polarized density functional theory (DFT) investigations of the structural, electronic, magnetic, and thermodynamics characteristics of the half-Heusler, CoMnTe and RuMnTe compounds are carried out. Calculations are accomplished within a state of the art full-potential (FP) linearized (L) augmented plane wave plus a local orbital (APW + lo) computational approach framed within DFT. The generalized gradient approximation (GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE) is implemented as an exchange correlation functional as a part of the total energy calculation. From the analysis of the calculated electronic band structure as well as the density of states for both compounds, a strong hybridization between d states of the higher valent transition metal (TM) atoms (Co, Ru) and lower valent TM atoms of (Mn) is observed. Furthermore, total and partial density of states (PDOS) of the ground state and the results of spin magnetic moments reveal that these compounds are both stable and ideal half-metallic ferromagnetic. The effects of the unit cell volume on the magnetic properties and half-metaliicity are crucial. It is worth noting that our computed results of the total spin magnetic moments, for CoMnTe equal to 4 ~tB and 3 p-B per unit cell for RuMnTe, nicely follow the rule μ2tot = Zt - 18. Using the quasi-harmonic Debye model, which considers the phononic effects, the effecs of pressure P and temperature T on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and heat capacity for these compounds are investigated for the first time. 展开更多
关键词 half-Heusler alloys half-metallic behavior magnetISM thermodynamic properties first principlesmethods
下载PDF
First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation,mechanical and magnetic properties 被引量:2
15
作者 Huaxin Qi Jing Bai +7 位作者 Miao Jin Jiaxin Xu Xin Liu Ziqi Guan Jianglong Gu Daoyong Cong Xiang Zhao Liang Zuo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期930-938,共9页
The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125... The martensitic transformation,mechanical,and magnetic properties of the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) (x=0.125,0.25,0.375,0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5)[(x=0.125,y=0.125,0.25,0.375,0.5) and (x=0.125,0.25,0.375,y=0.625)]alloys were systematically studied by the first-principles calculations.For the formation energy,the martensite is smaller than the austenite,the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation.The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni_(2)Mn_(1.5-x)Cu_(x)Ti_(0.5) and Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) (y<0.625) alloys.When y=0.625 in the Ni_(2-y)Co_(y)Mn_(1.5-x)Cu_(x)Ti_(0.5) series,the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state.Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy.Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance,but reduce the toughness in the Ni–Mn–Cu–Ti alloy.And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys.The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties. 展开更多
关键词 Ni–Mn–Ti-based all-d-metal Heusler alloys first-principles calculations mechanical properties martensitic transformation magnetic properties
下载PDF
Mechanical properties and microstructural evolution of rheocast A356 semi-solid slurry prepared by annular electromagnetic stirring 被引量:1
16
作者 Mohammad Taghi Asadi Khanouki 《China Foundry》 SCIE CAS CSCD 2023年第4期315-328,共14页
Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase a... Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture. 展开更多
关键词 semi-solid slurry annular electromagnetic stirring rheocast A356 aluminum alloy microstructural evolution mechanical properties magnetic flux density
下载PDF
Influence of Phosphorus Content and Magnetic Annealing on Soft Magnetic Properties of Electrodeposited Amorphous FeMnP Alloy Films
17
作者 Vincent Izerimana Lei Ma +2 位作者 Huiliang Wu Jianbo Wang Qingfang Liu 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第1期1-14,共14页
In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffr... In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffraction radiation patterns showed an amorphous structure of electrodeposited alloy films. The saturation magnetization and coercivity value decreased from 586 emu/cc to 346 emu/cc, and 52 Oe to 18 Oe, with the P content increased, respectively. The absorption resonance peak became broad as the P content increased, and the natural resonance frequency decreased from 1.8 GHz to 0.6 GHz, with the P content increasing. Magnetic annealing of samples reduced the magnetic damping, and natural resonance frequency increased by about 1.8 GHz and 3.5 GHz for the sample with lower and higher P content. The film structure with lower P content changed at 300&#730;C, while the structure remains unchanged for the films with higher P content. Thus, the crystallization temperature could depend on the P content in the film. FeMnP alloy films could be used in high-frequency devices. 展开更多
关键词 PHOSPHORUS magnetic Annealing Soft magnetic Property Natural Resonance Frequency
下载PDF
Low Temperature Heat Capacity of Zn Substituted Cobalt Ferrite Nanosphere:The Relation between Magnetic Properties and Microstructure
18
作者 YUAN Meng GU Xiaojie +4 位作者 FU Jie WANG Shaoxu SHI Quan TAN Zhicheng XU Fen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期984-995,共12页
Co_((1-x))ZnxFe_(2)O_(4)nanospheres(x=0,0.5,0.8)with a unidirectional cubic spinel structure were prepared by a solvothermal method.By using a range of theoretical and empirical models,the experimental heat capacity v... Co_((1-x))ZnxFe_(2)O_(4)nanospheres(x=0,0.5,0.8)with a unidirectional cubic spinel structure were prepared by a solvothermal method.By using a range of theoretical and empirical models,the experimental heat capacity values were fitted as a function of temperature over a suitable temperature range to explain the possible relationship between the magnetic properties and microstructure of the nanospheres.As a result,at a low temperature(T<10 K),the parameter Bfswdecreases with increasing Zn concentration,implying that the exchange interaction between A and B sites decreases.At a relatively high temperature(T>50 K),the Debye temperature decreases with increasing Zn concentration,which is due to the weakening of the interatomic bonding force after the addition of non-magnetic materials to the Co Fe_(2)O_(4)spinel ferrite. 展开更多
关键词 Co-Zn spinal ferrite nanospheres magnetic properties heat capacity thermodynamic functions PPMS
下载PDF
Synthesis, Characterization, and Effects of Morphology on the Magnetic Application Base Properties of Pure Nickel Oxide (NiO) and Cobalt-Doped Nickel Oxide/Nickel Hydroxide (CoxNi1-xO/Ni(OH)2) Nanocomposites
19
作者 Ekane Peter Etape Oga Eugene Agbor +3 位作者 Beckley Victorine Namondo Zoubir Benmaamar Josepha Foba-Tendo John Ngolui Lambi 《Advances in Nanoparticles》 2023年第3期106-122,共17页
Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis,... Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis, sensing, electric, thermal, magnetic, and photovoltaic applications. The general properties and particle morphology of nickel oxide/Nickel hydroxide NPs can be modified by the introduction of impurity atoms or ions. Nano sized nickel oxide/nickel hydroxide nanocomposites were obtained from the thermal decomposition of single molecular precursors synthesized by a modified oxalate route using Carambola fruit juice as a precipitating agent. The compositional and morphological variations were studied by introducing cobalt as an impurity ion at different w/w% fractions (0%, 0.1%, 0.3%, 0.5%, 1%, 3%, 5.0%, 40.0% and 50.0%) into the microstructure of the nickel oxide/hydroxide. The precursors were characterized by FT-IR, while TGA/DTG analysis was carried out to decompose the precursors. The precursors decomposed at 400°C and were characterized by PXRD and SEM/TEM. The results revealed that Pure Nickel Oxide (NiO) and, Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have been synthesized and the synthesized samples have exhibited three distinct morphologies (porous face-centered cubic nano rods, rough and discontinuous Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) composite and, smooth and continuous mix spherical/cuboidal mixed morphological phase of (NiO/CoO). The morphology of the NPs varied with the introduction of the dopant atoms and with increase in the concentration of dopant atoms in the composite. Magnetic studies using vibrating sample magnetometry revealed superparamagnetic properties which correlated strongly with particle size, shape and morphology. Observed values of retention (4.50 × 10<sup>-3</sup> emu/g) and coercivity (65.321 Oe) were found for 0.5 w/w% corresponding to impregnated porous nanorods of Co-doped NiO, and retention (9.03 × 10<sup>-3</sup> emu/g) and coercivity (64.341 Oe), for X = 50.0%, corresponding to an aggregate network of a Nano spherical/cubic CoO/NiO mixed phase. Magnetic properties within this range are known to improve the magnetic memory and hardness of the magnetic materials. Therefore, the synthesized Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have potential applications in Magnetic memories and hardness of magnetic materials. 展开更多
关键词 Nickel Oxide/Hydroxide Doping MORPHOLOGY magnetic properties Carambola Fruit Juice
下载PDF
Synthesis, Characterization, and Effects of Morphology on the Magnetic Application Base Properties of Pure Nickel Oxide (NiO) and Cobalt-Doped Nickel Oxide/Nickel Hydroxide (CoxNi1-xO/Ni(OH)2) Nanocomposites
20
作者 Ekane Peter Etape Oga Eugene Agbor +3 位作者 Beckley Victorine Namondo Zoubir Benmaamar Josepha Foba-Tendo John Ngolui Lambi 《Advances in Microbiology》 2023年第3期106-122,共17页
Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis,... Nano particle (NP) morphology is one of the material properties at the origin of potential application base properties exploited in several engineering and technology domains, such as fuel cell, electrodes, catalysis, sensing, electric, thermal, magnetic, and photovoltaic applications. The general properties and particle morphology of nickel oxide/Nickel hydroxide NPs can be modified by the introduction of impurity atoms or ions. Nano sized nickel oxide/nickel hydroxide nanocomposites were obtained from the thermal decomposition of single molecular precursors synthesized by a modified oxalate route using Carambola fruit juice as a precipitating agent. The compositional and morphological variations were studied by introducing cobalt as an impurity ion at different w/w% fractions (0%, 0.1%, 0.3%, 0.5%, 1%, 3%, 5.0%, 40.0% and 50.0%) into the microstructure of the nickel oxide/hydroxide. The precursors were characterized by FT-IR, while TGA/DTG analysis was carried out to decompose the precursors. The precursors decomposed at 400°C and were characterized by PXRD and SEM/TEM. The results revealed that Pure Nickel Oxide (NiO) and, Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have been synthesized and the synthesized samples have exhibited three distinct morphologies (porous face-centered cubic nano rods, rough and discontinuous Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) composite and, smooth and continuous mix spherical/cuboidal mixed morphological phase of (NiO/CoO). The morphology of the NPs varied with the introduction of the dopant atoms and with increase in the concentration of dopant atoms in the composite. Magnetic studies using vibrating sample magnetometry revealed superparamagnetic properties which correlated strongly with particle size, shape and morphology. Observed values of retention (4.50 × 10<sup>-3</sup> emu/g) and coercivity (65.321 Oe) were found for 0.5 w/w% corresponding to impregnated porous nanorods of Co-doped NiO, and retention (9.03 × 10<sup>-3</sup> emu/g) and coercivity (64.341 Oe), for X = 50.0%, corresponding to an aggregate network of a Nano spherical/cubic CoO/NiO mixed phase. Magnetic properties within this range are known to improve the magnetic memory and hardness of the magnetic materials. Therefore, the synthesized Cobalt-doped Nickel Oxide/nickel hydroxide (Co<sub>x</sub>Ni<sub>1</sub>-<sub>x</sub>O/Ni(OH)<sub>2</sub>) Nano composites have potential applications in Magnetic memories and hardness of magnetic materials. 展开更多
关键词 Nickel Oxide/Hydroxide Doping MORPHOLOGY magnetic properties Carambola Fruit Juice
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部