Concrete is one of the most important elements in building construction.However,concrete used in construction is susceptible to damage due to corrosion.The influence of corrosive substances causes changes in the reinf...Concrete is one of the most important elements in building construction.However,concrete used in construction is susceptible to damage due to corrosion.The influence of corrosive substances causes changes in the reinforcing steel and affects the strength of the structure.The repair method is one approach to overcome this problem.This research aims to determine the effect of grouting and jacketing repairs on corroded concrete.The concrete used has dimensions of 15 cm×15 cm×60 cm with planned corrosion variations of 50%,60%,and 70%.The test objects were tested using the Non-Destructive Testing(NDT)method using Ultrasonic Pulse Velocity(UPV).The test results show that the average speed of normal concrete is 5070 m/s,while the lowest average speed is 3070 m/s on the 70%planned corrosion test object.The test object was then given a load of 1600 kgf.At this stage,there is a decrease in speed and wave shape with the lowest average speed obtained at 2753 m/s.The repair method is an effort to restore concrete performance by using grouting and jacketing.Grouting is done by injecting mortar material into it.Jacketing involves adding thickness to the existing concrete layer with additional layers of concrete.After improvements were made,there was an improvement in the UPV test,with a peak speed value of 4910 m/s.Repairing concrete by filling cracks can improve concrete continuity and reduce waveform distortion,thereby increasing wave propagation speed.展开更多
The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position ...The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position on the suppression effect.In this work,the wind-vortex-induced vibration of an elastic pipe of a deepwater jacket was studied,and vibrations were suppressed by using an NES.A van der Pol wake oscillator was used to simulate vortex-induced force,and the dynamic equation of the pipe considering the NES was established.The Galerkin method was applied to discretize the motion equation,and the vortex-induced vibration(VIV)of the pipe at reduced wind speeds was numerically analyzed.The novelty of this research is that particle swarm optimization was used to optimize the parameters of the NES to improve vibration suppression.The influence of the installation position,nonlinear stiffness,and damping parameters of the NES on vibration suppression was analyzed.Results showed that the optimized parameter combinations of the NES can effectively reduce wind-vortex-induced pipe vibration.The installation position of the NES had a significant effect on vibration suppression,and the midpoint of the pipe was the optimal NES installation position.An increase in stiffness or a 10% decrease in damping may cause vibration suppression failure.The results of this study provide some guidance for VIV suppression in deepwater jacket pipes.展开更多
The evolution of threats and scenarios requires continuous performance improvements of ballistic protections for armed forces.From a modeling point of view,it is necessary to use sufficiently precise material behavior...The evolution of threats and scenarios requires continuous performance improvements of ballistic protections for armed forces.From a modeling point of view,it is necessary to use sufficiently precise material behavior models to accurately describe the phenomena observed during the impact of a projectile on a protective equipment.In this context,the goal of this paper is to characterize the behavior of a small caliber steel jacket by combining experimental and numerical approaches.The experimental method is based on the lateral compression of ring specimens directly machined from the thin and small ammunition.Various speeds and temperatures are considered in a quasi-static regime in order to reveal the strain rate and temperature dependencies of the tested material.The Finite Element Updating Method(FEMU)is used.Experimental results are coupled with an inverse optimization method and a finite element numerical model in order to determine the parameters of a constitutive model representative of the jacket material.Predictions of the present model are verified against experimental results and a parametric study as well as a discussion on the identified material parameters are proposed.The results indicate that the strain hardening parameter can be neglected and the behavior of the thin steel jacket can be described by a modeling without strain hardening sensitivity.展开更多
Columbia is a world-renowned manufacturer of outdoor products.Its product range covers all aspects of outdoor equipment such as jackets,down jackets,outdoor footwear,backpacks and accessories.In the outdoor industry,C...Columbia is a world-renowned manufacturer of outdoor products.Its product range covers all aspects of outdoor equipment such as jackets,down jackets,outdoor footwear,backpacks and accessories.In the outdoor industry,Columbia was the first brand to propose a three-in-one garment design concept.This practical design has since been adopted by almost every outdoor brand.The Columbia Jacket is positioned for urban outdoor recreation.Its rugged materials and design make it suitable for low-altitude outdoor sports as well as urban commuting.展开更多
When the gentle breeze of spring starts to fill the air,it's often a time of transition,where the chill of winter gives way to the warmth of the coming season.However,for those who love the outdoors,spring can sti...When the gentle breeze of spring starts to fill the air,it's often a time of transition,where the chill of winter gives way to the warmth of the coming season.However,for those who love the outdoors,spring can still present its own set of challenges,especially when it's time to choose the right jacket.Whether you're hiking in the hills,exploring the trails,or just taking a leisurely walk in the park,having a jacket that offers the perfect blend of warmth,comfort,and breathability is crucial.We'll delve into the various options available for jackets that are perfect for the outdoors in spring.展开更多
Arc’teryx’s Beta AR Jacket sets a new bar in terms of what a mainstream outdoor jacket can do.You’ll turn around and charge headfirst into a rainstorm with this fully impermeable outer layer that packs in everythin...Arc’teryx’s Beta AR Jacket sets a new bar in terms of what a mainstream outdoor jacket can do.You’ll turn around and charge headfirst into a rainstorm with this fully impermeable outer layer that packs in everything you need to lock in your core and stay dry.Unlike some jackets,the best part is that this jacket also pays dividends in sunny weather.While it’s designed for nasty weather,it stays comfortable when the storm passes away.The company’s high-tech waterproof membrane simultaneously wicks moisture and finally kicks that classic clammy raincoat feeling to the curb.展开更多
In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve...In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.展开更多
An inevitable consequence of the development of the offshore petroleum industry is the eventual obsolescence of large offshore structures. Proper methods for removal of decommissioned offshore platforms are becoming a...An inevitable consequence of the development of the offshore petroleum industry is the eventual obsolescence of large offshore structures. Proper methods for removal of decommissioned offshore platforms are becoming an important topic that the oil and gas industry must pay increasing attention to. While removing sections from a decommissioned jacket platform, the stability of the remaining parts is critical The jacket danger indices D ~ and Ds defined in this paper are very useful for analyzing the safety of any procedure planned for disassembling a jacket platform. The safest piles cutting sequence can be determined easily by comparing every column of Do and Ds or simply analyzing the figures of every row ofD o and D,.展开更多
In this paper, reliability analysis for the offshore jacket platform with the interaction of structure- pile- soil under extreme environmental loads is carried out. The inherent uncertainties of the environmental load...In this paper, reliability analysis for the offshore jacket platform with the interaction of structure- pile- soil under extreme environmental loads is carried out. The inherent uncertainties of the environmental load, foundation soil, platform itself, and calculating models are evaluated. The action of extreme loads on the offshore platform is modeled as a function of extreme wave height. The system capacity of the whole platform is determined by nonlinear pushover analysis, and the relevant probability property is obtained by the simulation method. The reliability model for the whole jacket platform is described as the relationship between the load and resistance based on the offshore design codes. The reliability of whole platform is calculated by the analytical method and the importance sampling method on the basis of a case study for a tripod jacket platform.展开更多
The statistical characteristics and parameters of loads and resistances are systematically studied for the development of probabilistic limit state design method for steel jacket offshore platforms in the China offsho...The statistical characteristics and parameters of loads and resistances are systematically studied for the development of probabilistic limit state design method for steel jacket offshore platforms in the China offshore area. The mean value, standard variance and distribution pattern of resistances and loads in different base perieds are presented. The statistical parameters of structural member resistance, self-weight, deck live load, and environmental loads such as wind, wave, current and ice, which are drawn on a large amount of observatian data of offshore environmental factors, and the design data of platforms in China Bohai Sea form the data set, providing a necessary basis for the calibration of load and resistance factors to realize the reliability-based design of jacket platform structures.展开更多
基金supported by the Ministry of Education,Culture,Research,and Technology(Indonesia),Grant number 107/E5/PG.02.00.PL/2024,AZ.
文摘Concrete is one of the most important elements in building construction.However,concrete used in construction is susceptible to damage due to corrosion.The influence of corrosive substances causes changes in the reinforcing steel and affects the strength of the structure.The repair method is one approach to overcome this problem.This research aims to determine the effect of grouting and jacketing repairs on corroded concrete.The concrete used has dimensions of 15 cm×15 cm×60 cm with planned corrosion variations of 50%,60%,and 70%.The test objects were tested using the Non-Destructive Testing(NDT)method using Ultrasonic Pulse Velocity(UPV).The test results show that the average speed of normal concrete is 5070 m/s,while the lowest average speed is 3070 m/s on the 70%planned corrosion test object.The test object was then given a load of 1600 kgf.At this stage,there is a decrease in speed and wave shape with the lowest average speed obtained at 2753 m/s.The repair method is an effort to restore concrete performance by using grouting and jacketing.Grouting is done by injecting mortar material into it.Jacketing involves adding thickness to the existing concrete layer with additional layers of concrete.After improvements were made,there was an improvement in the UPV test,with a peak speed value of 4910 m/s.Repairing concrete by filling cracks can improve concrete continuity and reduce waveform distortion,thereby increasing wave propagation speed.
基金supported by the Tianjin Municipal Transportation Commission Project(No.2018-b2).
文摘The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position on the suppression effect.In this work,the wind-vortex-induced vibration of an elastic pipe of a deepwater jacket was studied,and vibrations were suppressed by using an NES.A van der Pol wake oscillator was used to simulate vortex-induced force,and the dynamic equation of the pipe considering the NES was established.The Galerkin method was applied to discretize the motion equation,and the vortex-induced vibration(VIV)of the pipe at reduced wind speeds was numerically analyzed.The novelty of this research is that particle swarm optimization was used to optimize the parameters of the NES to improve vibration suppression.The influence of the installation position,nonlinear stiffness,and damping parameters of the NES on vibration suppression was analyzed.Results showed that the optimized parameter combinations of the NES can effectively reduce wind-vortex-induced pipe vibration.The installation position of the NES had a significant effect on vibration suppression,and the midpoint of the pipe was the optimal NES installation position.An increase in stiffness or a 10% decrease in damping may cause vibration suppression failure.The results of this study provide some guidance for VIV suppression in deepwater jacket pipes.
基金co-funded by the Direction Générale de l'Armement (DGA)the French-German Institute of Saint Louis (ISL)。
文摘The evolution of threats and scenarios requires continuous performance improvements of ballistic protections for armed forces.From a modeling point of view,it is necessary to use sufficiently precise material behavior models to accurately describe the phenomena observed during the impact of a projectile on a protective equipment.In this context,the goal of this paper is to characterize the behavior of a small caliber steel jacket by combining experimental and numerical approaches.The experimental method is based on the lateral compression of ring specimens directly machined from the thin and small ammunition.Various speeds and temperatures are considered in a quasi-static regime in order to reveal the strain rate and temperature dependencies of the tested material.The Finite Element Updating Method(FEMU)is used.Experimental results are coupled with an inverse optimization method and a finite element numerical model in order to determine the parameters of a constitutive model representative of the jacket material.Predictions of the present model are verified against experimental results and a parametric study as well as a discussion on the identified material parameters are proposed.The results indicate that the strain hardening parameter can be neglected and the behavior of the thin steel jacket can be described by a modeling without strain hardening sensitivity.
文摘Columbia is a world-renowned manufacturer of outdoor products.Its product range covers all aspects of outdoor equipment such as jackets,down jackets,outdoor footwear,backpacks and accessories.In the outdoor industry,Columbia was the first brand to propose a three-in-one garment design concept.This practical design has since been adopted by almost every outdoor brand.The Columbia Jacket is positioned for urban outdoor recreation.Its rugged materials and design make it suitable for low-altitude outdoor sports as well as urban commuting.
文摘When the gentle breeze of spring starts to fill the air,it's often a time of transition,where the chill of winter gives way to the warmth of the coming season.However,for those who love the outdoors,spring can still present its own set of challenges,especially when it's time to choose the right jacket.Whether you're hiking in the hills,exploring the trails,or just taking a leisurely walk in the park,having a jacket that offers the perfect blend of warmth,comfort,and breathability is crucial.We'll delve into the various options available for jackets that are perfect for the outdoors in spring.
文摘Arc’teryx’s Beta AR Jacket sets a new bar in terms of what a mainstream outdoor jacket can do.You’ll turn around and charge headfirst into a rainstorm with this fully impermeable outer layer that packs in everything you need to lock in your core and stay dry.Unlike some jackets,the best part is that this jacket also pays dividends in sunny weather.While it’s designed for nasty weather,it stays comfortable when the storm passes away.The company’s high-tech waterproof membrane simultaneously wicks moisture and finally kicks that classic clammy raincoat feeling to the curb.
基金The Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (NoIRT0518)
文摘In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.
基金Supported by the Open Foundation of the State Key Lab for Ocean Engineering of Shanghai Jiao Tong University under Grant No.0602
文摘An inevitable consequence of the development of the offshore petroleum industry is the eventual obsolescence of large offshore structures. Proper methods for removal of decommissioned offshore platforms are becoming an important topic that the oil and gas industry must pay increasing attention to. While removing sections from a decommissioned jacket platform, the stability of the remaining parts is critical The jacket danger indices D ~ and Ds defined in this paper are very useful for analyzing the safety of any procedure planned for disassembling a jacket platform. The safest piles cutting sequence can be determined easily by comparing every column of Do and Ds or simply analyzing the figures of every row ofD o and D,.
文摘In this paper, reliability analysis for the offshore jacket platform with the interaction of structure- pile- soil under extreme environmental loads is carried out. The inherent uncertainties of the environmental load, foundation soil, platform itself, and calculating models are evaluated. The action of extreme loads on the offshore platform is modeled as a function of extreme wave height. The system capacity of the whole platform is determined by nonlinear pushover analysis, and the relevant probability property is obtained by the simulation method. The reliability model for the whole jacket platform is described as the relationship between the load and resistance based on the offshore design codes. The reliability of whole platform is calculated by the analytical method and the importance sampling method on the basis of a case study for a tripod jacket platform.
基金This researchis partiallyfunded bythe National Natural Science Foundation of China (Grant No.59895410)
文摘The statistical characteristics and parameters of loads and resistances are systematically studied for the development of probabilistic limit state design method for steel jacket offshore platforms in the China offshore area. The mean value, standard variance and distribution pattern of resistances and loads in different base perieds are presented. The statistical parameters of structural member resistance, self-weight, deck live load, and environmental loads such as wind, wave, current and ice, which are drawn on a large amount of observatian data of offshore environmental factors, and the design data of platforms in China Bohai Sea form the data set, providing a necessary basis for the calibration of load and resistance factors to realize the reliability-based design of jacket platform structures.