A simplified compact model for a miniaturized cross-shaped CMOS integrated Hall device is presented. The model has a simple circuit structure,only consisting of a passive network with eight non-linear resistors and fo...A simplified compact model for a miniaturized cross-shaped CMOS integrated Hall device is presented. The model has a simple circuit structure,only consisting of a passive network with eight non-linear resistors and four current-controlled voltage sources.It completely considers the following effects:non-linear conductivity,geometry dependence of sensitivity,temperature drift,lateral diffusion,and junction field effect.The model has been implemented in Verilog-A hardware description language and was successfully performed in a Cadence Spectre simulator.The simulation results are in good accordance with the classic experimental results reported in the literature.展开更多
The electrical properties of magnetic sensing devices fabricated from anisotropic materials are not easily extracted. Here we present a method for determining the resistance matrix for an anisotropic device with multi...The electrical properties of magnetic sensing devices fabricated from anisotropic materials are not easily extracted. Here we present a method for determining the resistance matrix for an anisotropic device with multiple electrical contacts placed in a perpendicular magnetic field. By using the methods developed by Van der Pauw and Wasscher, the analysis for the anisotropic system is reduced to the equivalent problem for an isotropic sample, which can then be solved using methods developed previously. As a result, the method works in the case of structures with an arbitrary number of asymmetric extended contacts at large magnetic field strength. In addition to the extraction of nonisotropic resistivities, the resistance matrix can be used to analyze the Hall effect for anisotropic plates.展开更多
Instead of the conventional design with five contacts in the sensor active area, innovative vertical Hall devices (VHDs) with four contacts and six contacts are asymmetrical in structural design but symmetrical in t...Instead of the conventional design with five contacts in the sensor active area, innovative vertical Hall devices (VHDs) with four contacts and six contacts are asymmetrical in structural design but symmetrical in the current flow that can be well fit for the spinning current technique for offset elimination. In this article, a conformal mapping calculation method is used to predict the performance of asymmetrical VHD embedded in a deep n-well with four contacts. Furthermore, to make the calculation more accurate, the junction field effect is also involved into the conformal mapping method. The error between calculated and simulated results is less than 5% for the currentrelated sensitivity, and approximately 13% for the voltage-related sensitivity. This proves that such calculations can be used to predict the optimal structure of the vertical Hall-devices.展开更多
文摘A simplified compact model for a miniaturized cross-shaped CMOS integrated Hall device is presented. The model has a simple circuit structure,only consisting of a passive network with eight non-linear resistors and four current-controlled voltage sources.It completely considers the following effects:non-linear conductivity,geometry dependence of sensitivity,temperature drift,lateral diffusion,and junction field effect.The model has been implemented in Verilog-A hardware description language and was successfully performed in a Cadence Spectre simulator.The simulation results are in good accordance with the classic experimental results reported in the literature.
文摘The electrical properties of magnetic sensing devices fabricated from anisotropic materials are not easily extracted. Here we present a method for determining the resistance matrix for an anisotropic device with multiple electrical contacts placed in a perpendicular magnetic field. By using the methods developed by Van der Pauw and Wasscher, the analysis for the anisotropic system is reduced to the equivalent problem for an isotropic sample, which can then be solved using methods developed previously. As a result, the method works in the case of structures with an arbitrary number of asymmetric extended contacts at large magnetic field strength. In addition to the extraction of nonisotropic resistivities, the resistance matrix can be used to analyze the Hall effect for anisotropic plates.
基金supported by the Natural Science Foundation of Jiangsu Province,China(Nos.BK20131379,BK20141431)the Graduate Research and Innovation Projects of Jiangsu Province(No.SJLX_0373)
文摘Instead of the conventional design with five contacts in the sensor active area, innovative vertical Hall devices (VHDs) with four contacts and six contacts are asymmetrical in structural design but symmetrical in the current flow that can be well fit for the spinning current technique for offset elimination. In this article, a conformal mapping calculation method is used to predict the performance of asymmetrical VHD embedded in a deep n-well with four contacts. Furthermore, to make the calculation more accurate, the junction field effect is also involved into the conformal mapping method. The error between calculated and simulated results is less than 5% for the currentrelated sensitivity, and approximately 13% for the voltage-related sensitivity. This proves that such calculations can be used to predict the optimal structure of the vertical Hall-devices.