In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current...In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.展开更多
The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell(PIC)simulation method.By using the dispersion relation,it is found that unstable modes occur only in discrete bands in ...The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell(PIC)simulation method.By using the dispersion relation,it is found that unstable modes occur only in discrete bands in k space at cyclotron harmonics.The results indicate that the number of unstable modes increases by increasing the external electric field and decreases by increasing the radial magnetic field.The ion mass does not affect the instability wavelength.Furthermore,the results confirm that there is an instability with short wavelength and high frequency.Finally,it is shown that the electron and ion distribution functions deviate from the initial state and eventually the instability is saturated by ion trapping in the azimuthal direction.Also for light mass ion,the frequency and phase velocity are very high that could lead to high electron mobility in the axial direction.展开更多
In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread lit...In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread literature of interpretation of conductivity of metals, superconductor in the normal state and semiconductors with degenerated electron gas. In literature there are many cases when to these materials the classical statistics is applied. It is well known that the electron heat capacity and thermal noise (and as a consequence the electrical conductivity) are determined by randomly moving electrons, which energy is close to the Fermi energy level, and the other part of electrons, which energy is well below the Fermi level can not be scattered and change its energy. Therefore there was tried as simple as possible on the ground of Fermi distribution, and on random motion of charge carriers, and on the well known experimental results to take general expressions for various kinetic parameters which are applicable for materials both without and with degenerated electron gas. It is shown, that drift mobility of randomly moving charge carriers, depending on the degree degeneracy, can considerably exceed the Hall mobility. Also it is shown that the Einstein relation between the diffusion coefficient and the drift mobility of charge carriers is valid even in the case of degeneracy. There also will be presented the main kinetic parameter values for different metals.展开更多
The general expressions based on the Fermi distribution of the free charge carriers are applied for estimation of the transport characteristics in superconductors at the temperature well above the superconducting phas...The general expressions based on the Fermi distribution of the free charge carriers are applied for estimation of the transport characteristics in superconductors at the temperature well above the superconducting phase transition temperature TC. The Hall-effect experimental results in the normal state of the superconductor YBa2Cu3O7-δ are not finally explained. On the ground of the randomly moving charge carriers, the transport characteristics of the randomly moving charge carriers for both single type and two types of the charge carriers are presented. The particular attention has been pointed to the Hall-effect measurement results of the high-TC superconductor YBa2Cu3O7-δ. It is at the first time derived the Hall coefficient expression for two type of highly degenerate charge carriers (electrons and holes) on the ground of the randomly moving charge carriers at the Fermi surface. It is shown that the Hall coefficient and other transport characteristics are determined by the ratio between the electron-like and hole-like densities of states at the Fermi surface.展开更多
The general expressions, based on the Fermi distribution of the free electrons, are applied for calculation of the kinetic coefficients in donor-doped silicon at arbitrary degree of the degeneracy of electron gas unde...The general expressions, based on the Fermi distribution of the free electrons, are applied for calculation of the kinetic coefficients in donor-doped silicon at arbitrary degree of the degeneracy of electron gas under equilibrium conditions. The classical statistics lead to large errors in estimation of the transport parameters for the materials where Fermi level is located high above the conduction band edge unless the effective density of randomly moving electrons is introduced. The obtained results for the diffusion coefficient and drift mobility are discussed together with practical approximations applicable for non-degenerate electron gas and materials with arbitrary degree of degeneracy. In particular, the drift mobility of randomly moving electrons is found to depend on the degree of degeneracy and can exceed the Hall mobility considerably. When the effective density is introduced, the traditional Einstein relation between the diffusion coefficient and the drift mobility of randomly moving electrons is conserved at any level of degeneracy. The main conclusions and formulae can be applicable for holes in acceptor-doped silicon as well.展开更多
基金funded by the Basic Research on National Defense of China(No.JCKY2021603B033),which is gratefully acknowledged。
文摘In order to realize the thrust estimation of the Hall thruster during its flight mission,this study establishes an estimation method based on measurement of the Hall drift current.In this method,the Hall drift current is calculated from an inverse magnetostatic problem,which is formulated according to its induced magnetic flux density detected by sensors,and then the thrust is estimated by multiplying the Hall drift current with the characteristic magnetic flux density of the thruster itself.In addition,a three-wire torsion pendulum micro-thrust measurement system is utilized to verify the estimate values obtained from the proposed method.The errors were found to be less than 8%when the discharge voltage ranged from 250 V to 350 V and the anode flow rate ranged from 30 sccm to 50 sccm,indicating the possibility that the proposed thrust estimate method could be practically applied.Moreover,the measurement accuracy of the magnetic flux density is suggested to be lower than 0.015 mT and improvement on the inverse problem solution is required in the future.
文摘The E×B drift instability is studied in Hall thruster using one-dimensional particle in cell(PIC)simulation method.By using the dispersion relation,it is found that unstable modes occur only in discrete bands in k space at cyclotron harmonics.The results indicate that the number of unstable modes increases by increasing the external electric field and decreases by increasing the radial magnetic field.The ion mass does not affect the instability wavelength.Furthermore,the results confirm that there is an instability with short wavelength and high frequency.Finally,it is shown that the electron and ion distribution functions deviate from the initial state and eventually the instability is saturated by ion trapping in the azimuthal direction.Also for light mass ion,the frequency and phase velocity are very high that could lead to high electron mobility in the axial direction.
文摘In this short review some aspects of applications of free electron theory on the ground of the Fermi statistics will be analyzed. There it is an intention to attempt somebody’s attention to problems in widespread literature of interpretation of conductivity of metals, superconductor in the normal state and semiconductors with degenerated electron gas. In literature there are many cases when to these materials the classical statistics is applied. It is well known that the electron heat capacity and thermal noise (and as a consequence the electrical conductivity) are determined by randomly moving electrons, which energy is close to the Fermi energy level, and the other part of electrons, which energy is well below the Fermi level can not be scattered and change its energy. Therefore there was tried as simple as possible on the ground of Fermi distribution, and on random motion of charge carriers, and on the well known experimental results to take general expressions for various kinetic parameters which are applicable for materials both without and with degenerated electron gas. It is shown, that drift mobility of randomly moving charge carriers, depending on the degree degeneracy, can considerably exceed the Hall mobility. Also it is shown that the Einstein relation between the diffusion coefficient and the drift mobility of charge carriers is valid even in the case of degeneracy. There also will be presented the main kinetic parameter values for different metals.
文摘The general expressions based on the Fermi distribution of the free charge carriers are applied for estimation of the transport characteristics in superconductors at the temperature well above the superconducting phase transition temperature TC. The Hall-effect experimental results in the normal state of the superconductor YBa2Cu3O7-δ are not finally explained. On the ground of the randomly moving charge carriers, the transport characteristics of the randomly moving charge carriers for both single type and two types of the charge carriers are presented. The particular attention has been pointed to the Hall-effect measurement results of the high-TC superconductor YBa2Cu3O7-δ. It is at the first time derived the Hall coefficient expression for two type of highly degenerate charge carriers (electrons and holes) on the ground of the randomly moving charge carriers at the Fermi surface. It is shown that the Hall coefficient and other transport characteristics are determined by the ratio between the electron-like and hole-like densities of states at the Fermi surface.
文摘The general expressions, based on the Fermi distribution of the free electrons, are applied for calculation of the kinetic coefficients in donor-doped silicon at arbitrary degree of the degeneracy of electron gas under equilibrium conditions. The classical statistics lead to large errors in estimation of the transport parameters for the materials where Fermi level is located high above the conduction band edge unless the effective density of randomly moving electrons is introduced. The obtained results for the diffusion coefficient and drift mobility are discussed together with practical approximations applicable for non-degenerate electron gas and materials with arbitrary degree of degeneracy. In particular, the drift mobility of randomly moving electrons is found to depend on the degree of degeneracy and can exceed the Hall mobility considerably. When the effective density is introduced, the traditional Einstein relation between the diffusion coefficient and the drift mobility of randomly moving electrons is conserved at any level of degeneracy. The main conclusions and formulae can be applicable for holes in acceptor-doped silicon as well.