Undoped (ND) semi-insulating (SI) liquid encapsulated Czochralski (LEC) GaAscrystals were investigated by photocurrent and temperature-dependent Hall measurements. It isindicated that strong nonuniformities in the dis...Undoped (ND) semi-insulating (SI) liquid encapsulated Czochralski (LEC) GaAscrystals were investigated by photocurrent and temperature-dependent Hall measurements. It isindicated that strong nonuniformities in the distributions of impurities and defects can occur forthe NDSILEC GaAs crystal grown under a condition with strong constitutional supercooling. In suchcase, the deep level that dominates Fermi level is spacial location dependent, and the GaAs crystalbecomes a composite consisting of a large number of elementary domains with differentconductivities. The sub-bandgap photocurrent response and the carrier transport properties for thiskind of composite are quite different from those for homogeneous NDSILEC GaAs.展开更多
The Mg acceptor activation mechanism and hole transport characteristics in AlGaN alloy with Mg doping concentration(~ 1020 cm-3) grown by metal–organic chemical vapor deposition(MOCVD) are systematically studied thro...The Mg acceptor activation mechanism and hole transport characteristics in AlGaN alloy with Mg doping concentration(~ 1020 cm-3) grown by metal–organic chemical vapor deposition(MOCVD) are systematically studied through optical and electrical properties. Emission lines of shallow oxygen donors and(VⅢ complex)1- as well as VN3+ and neutral Mg acceptors are observed, which indicate that self-compensation is occurred in Mg-doped AlGaN at highly doping levels. The fitting of the temperature-dependent Hall effect data shows that the acceptor activation energy values in Mgdoped AlxGa1-xN(x = 0.23, 0.35) are 172 meV and 242 meV, and the hole concentrations at room temperature are 1.2×1018 cm-3 and 3.3× 1017 cm-3, respectively. Therefore, it is believed that there exists the combined effect of the Coulomb potentials of the dopants and screening of the Coulomb potentials by a high hole concentration. Moreover, due to the high ionized acceptors’ concentration and compensation ratio, the impurity conduction becomes more prominent and the valence band mobility drops sharply at low temperature.展开更多
Metalorganic chemical vapor deposition(MOCVD) growth of homo-and hetero-epitaxial GaSb has been investigated,by using trimethylgallium(TMGa)and trimetbylantimony(TMSb)as source materials on n-type GaSb and semi-insula...Metalorganic chemical vapor deposition(MOCVD) growth of homo-and hetero-epitaxial GaSb has been investigated,by using trimethylgallium(TMGa)and trimetbylantimony(TMSb)as source materials on n-type GaSb and semi-insulating GaAs substrates.The influence of Ⅲ/Ⅴ ratio on the growth of GaSb was studied in detail and it was found that the Ⅲ/Ⅴ ratio range proper for good quality epi-layers is narrow.The carrier mobility and concentration of undoped GaSb epi-layers are about 600 cm^2/Ⅴ·s and 2~4×10^(16)cm^(-3)at room temperature,respectively.The low temperature(77K)mobility is about 5 times of the room temperature's one.The low temperature(11K)photoluminescence(PL)spectrum and the temperature depen- dence of PL spectrum were investigated.The red shift of bound exciton with temperature was observed.展开更多
In this work,a Cu_(2)ZnSnS_(4)(CZTS)ingot is grown via a melting method,then cooled;the resulting molten stoichiomet-ric mixture is sealed off in a quartz ampoule under vacuum.The CZTS powder chemical composition anal...In this work,a Cu_(2)ZnSnS_(4)(CZTS)ingot is grown via a melting method,then cooled;the resulting molten stoichiomet-ric mixture is sealed off in a quartz ampoule under vacuum.The CZTS powder chemical composition analyses are determined us-ing energy dispersive spectroscopy,and revealing the slightly Cu-rich and Zn-poor character of the ingot.Powder X-ray diffrac-tion analysis reveals a crystalline structure with a kesterite phase formation,and a preferred orientation of(112)plane.The lat-tice constants of the a-and c-axes,calculated based on the XRD analyses,are a=5.40Åand c=10.84Å.Based on Hall measure-ments at room temperature,we find that the crystal exhibits p-type conductivity,with a high concentration of 1018 cm^(-3),a res-istivity of 1.7Ωcm,and a mobility of 10.69 cm^(2)V-1s-1.Activation energies are estimated based on an Arrhenius plot of conductiv-ity versus 1/T,for a temperature range of 80-350 K,measuring 35 and 160 meV in low-and high-temperature regimes,respect-ively,which is attributed to complex defects(2CuZn+SnZn)and antisite defects(CuZn),respectively.The observed scattering mech-anisms are attributed to ionized impurities and acoustic phonons at low and high temperatures,respectively.The extracted band-gap is 1.37 eV.展开更多
For Hall measurement under different magnetic fields at LN2 temperature,Hg1-xCdxTe (MCT) film (radius 1 cm) grown on CdTe substrate by LPE is photoengraved into many small Van Der Pauw squares,then their Hall coef...For Hall measurement under different magnetic fields at LN2 temperature,Hg1-xCdxTe (MCT) film (radius 1 cm) grown on CdTe substrate by LPE is photoengraved into many small Van Der Pauw squares,then their Hall coefficients and mobilities are measured and analyzed,respectively.Two films were Hall-tested during the temperature range from LHe 4.2 K to about 200 K.An actual impression on the uniformity of electrical parameters for MCT film can obtained by means of the methods presented in this paper.展开更多
The wavelet transformation is applied to the high current transformer.The high current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high current.The principle of the transformer is...The wavelet transformation is applied to the high current transformer.The high current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high current.The principle of the transformer is the Hall direct measurement principle.The transformer has the following three characteristics:firstly, the effect of the remnant field of the iron core on the measurement is decreased;secondly,because the temperature compensation is adopted,the transformer has good temperature charactreristic;thirdly,be cause the wavelet transfomation technology is adopted,the transformer has the capacity of good antijanming.展开更多
Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the ...Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the growth rate of diamond film decreases gradually, and the nitrogen-vacancy(NV) center luminescence intensity increases first and then weakens. The results show that oxygen in laughing gas has a strong inhibitory effect on formation of NV centers, and the inhibitory effect would be stronger as the concentration of laughing gas increases. As a result, the film growth rate and nitrogen-related compensation donor decrease, beneficial to increase the acceptor concentration(~3.2×10^(19)cm^(-3)) in the film. Moreover, it is found that the optimal regulation with the quality and electrical properties of boron doped diamond films could be realized by adding appropriate laughing gas, especially the hole mobility(~700cm^(2)/V·s), which is beneficial to the realization of high-quality boron doped diamond films and high-level optoelectronic device applications in the future.展开更多
Background The construction of China Spallation Neutron Source(CSNS)was started in 2011 and will be completed in 2018.The phase I CSNS facility consists of an 80MeV HLinac,a 1.6GeV Proton Rapid Cycling Synchrotron(RCS...Background The construction of China Spallation Neutron Source(CSNS)was started in 2011 and will be completed in 2018.The phase I CSNS facility consists of an 80MeV HLinac,a 1.6GeV Proton Rapid Cycling Synchrotron(RCS),two beam transport lines and a target station.Magnets in the RCS and transport lines should be measured before being installed in the tunnel.Method In this paper,a new hall probe measurement system is described.The design and performance of the hall probe measurement system is presented.Conclusions The measurement results meet the design requirements.Some key issues were solved in the process.展开更多
Undoped p-type Ga Sb single crystals were annealed at 550–600℃ for 100 h in ambient antimony. The annealed Ga Sb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy(GDMS), infra...Undoped p-type Ga Sb single crystals were annealed at 550–600℃ for 100 h in ambient antimony. The annealed Ga Sb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy(GDMS), infrared(IR)optical transmission and photoluminescence(PL) spectroscopy. Compared with the as-grown Ga Sb single crystal, the annealed Ga Sb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the Ga Sb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed.展开更多
We have recently demonstrated that GaAs nanosheets can be grown by metal-organic chemical vapor deposition (MOCVD). Here, we investigate these nanosheets by secondary electron scanning electron microscopy (SE-SEM)...We have recently demonstrated that GaAs nanosheets can be grown by metal-organic chemical vapor deposition (MOCVD). Here, we investigate these nanosheets by secondary electron scanning electron microscopy (SE-SEM) and electron beam induced current (EBIC) imaging. An abrupt boundary is observed between an initial growth region and an overgrowth region in the nanosheets. The SE-SEM contrast between these two regions is attributed to the inversion of doping at the boundary. EBIC mapping reveals a p-n junction formed along the boundary between these two regions. Rectifying I-V behavior is observed across the boundary further indicating the formation of a p-n junction. The electron concentration (ND) of the initial growth region is around 1 × 10^18 cm^-3, as determined by both Hall effect measurements and low temperature photoluminescence (PL) spectroscopy. Based on the EBIC data, the minority carrier diffusion length of the nanosheets is 177 nm, which is substantially longer than the corresponding length in unpassivated GaAs nanowires measured previously.展开更多
Defects in Sb implanted Zn O single crystals have been studied by using photoluminescence(PL) spectroscopy,X-ray diffraction(XRD) and Raman scattering.Electrical properties of the samples were analyzed by Hall effect ...Defects in Sb implanted Zn O single crystals have been studied by using photoluminescence(PL) spectroscopy,X-ray diffraction(XRD) and Raman scattering.Electrical properties of the samples were analyzed by Hall effect measurement.The results indicate that the annealed Sb-implanted sample is n-type with a free electron concentration of the same amplitude as the calculated implantation concentration.The well-known oxygen vacancy related deep level green PL band is suppressed in the as-implanted sample and recovers to the level close to the as-grown Zn O single crystal after annealing.These phenomena suggest that a large portion of as-implanted Sb atoms occupy oxygen lattice site in an unstable state and move to the interstitial site,forming the complex donor defect upon high temperature annealing,resulting in n-type conduction even if the implantation dose is quite high.展开更多
Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90 ℃.The effects of sodium thi...Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90 ℃.The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques.Deposited films were obtained at-0.60 V vs.SCE and characterized by XRD,SEM,FTIR,optical,photoelectrochemical and electrical measurements.Thickness of the deposited film was measured to be357 nm.X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along(002) plane.FTIR results confirmed the presence of ZnO films at peak558 cm^-1.SEM images showed uniform,compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape.Optical properties of ZnO reveal a high optical transmission(〉80%)and high absorption coefficient(α 〉 10^5 cm^-1) in visible region.The optical energy band gap was found to be 3.28 eV.Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction.Electrical properties of ZnO films showed a low electrical resistivity of 6.54 Ω·cm,carrier concentration of-1.3× 10^17cm^-3 and mobility of 7.35 cm^2V^-1s^-1.展开更多
GaSb is the most suitable substrate in the epitaxial growth of mixed semiconductors of GaSb system.In this work,Te-doped GaSb bulk crystals with different doping concentration have been annealed at 550℃ for100 h in a...GaSb is the most suitable substrate in the epitaxial growth of mixed semiconductors of GaSb system.In this work,Te-doped GaSb bulk crystals with different doping concentration have been annealed at 550℃ for100 h in ambient antimony.The annealed samples have been studied by Hall effect measurement,infrared(IR)optical transmission,Glow discharge mass spectroscopy(GDMS) and photoluminescence(PL) spectroscopy.After annealing,Te-doped GaSb samples exhibit a decrease of carrier concentration and increase of mobility,along with an improvement of below gap IR transmission.Native acceptor related electrical compensation analysis suggests a formation of donor defect with deeper energy level.The mechanism of the variation of the defect and its influence on the material properties are discussed.展开更多
基金This work was financially supported by the Natural Science Foundation of Tianjin (No. 02380411)the Natural Science Foundation of Hebei Province (No. 601048)
文摘Undoped (ND) semi-insulating (SI) liquid encapsulated Czochralski (LEC) GaAscrystals were investigated by photocurrent and temperature-dependent Hall measurements. It isindicated that strong nonuniformities in the distributions of impurities and defects can occur forthe NDSILEC GaAs crystal grown under a condition with strong constitutional supercooling. In suchcase, the deep level that dominates Fermi level is spacial location dependent, and the GaAs crystalbecomes a composite consisting of a large number of elementary domains with differentconductivities. The sub-bandgap photocurrent response and the carrier transport properties for thiskind of composite are quite different from those for homogeneous NDSILEC GaAs.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0403100 and 2017YFB0403101)the National Natural Science Foundation of China(Grant Nos.61704149,61674076,and 61605071)+7 种基金the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BY2013077,BK20141320,and BE2015111)the Project of Science and Technology Development Program in Shandong Province,China(Grant Nos.2013YD02054 and 2013YD02008)the Project of Shandong Provincial Higher Educational Science and Technology Program,China(Grant No.J13LN08)the Collaborative Innovation Center of Solid State Lighting and Energy-saving Electronics,Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Six-Talent Peaks Project of Jiangsu Province,China(Grant No.XYDXX-081)the Open Fund of the State Key Laboratory on Integrated Optoelectronics,China(Grant No.IOSKL2017KF03)the Project of Autonomous Innovation and Achievement Transformation Program in Zaozhuang City,China(Grant No.2017GH3)the Overseas Study Program Funded by Shandong Provincial Government,China,the Laboratory Open Fund from Jiangsu Key Laboratory of Photoelectric Information Functional Materials,China,and the Doctoral Foundation Project of Zaozhuang University,China.
文摘The Mg acceptor activation mechanism and hole transport characteristics in AlGaN alloy with Mg doping concentration(~ 1020 cm-3) grown by metal–organic chemical vapor deposition(MOCVD) are systematically studied through optical and electrical properties. Emission lines of shallow oxygen donors and(VⅢ complex)1- as well as VN3+ and neutral Mg acceptors are observed, which indicate that self-compensation is occurred in Mg-doped AlGaN at highly doping levels. The fitting of the temperature-dependent Hall effect data shows that the acceptor activation energy values in Mgdoped AlxGa1-xN(x = 0.23, 0.35) are 172 meV and 242 meV, and the hole concentrations at room temperature are 1.2×1018 cm-3 and 3.3× 1017 cm-3, respectively. Therefore, it is believed that there exists the combined effect of the Coulomb potentials of the dopants and screening of the Coulomb potentials by a high hole concentration. Moreover, due to the high ionized acceptors’ concentration and compensation ratio, the impurity conduction becomes more prominent and the valence band mobility drops sharply at low temperature.
文摘Metalorganic chemical vapor deposition(MOCVD) growth of homo-and hetero-epitaxial GaSb has been investigated,by using trimethylgallium(TMGa)and trimetbylantimony(TMSb)as source materials on n-type GaSb and semi-insulating GaAs substrates.The influence of Ⅲ/Ⅴ ratio on the growth of GaSb was studied in detail and it was found that the Ⅲ/Ⅴ ratio range proper for good quality epi-layers is narrow.The carrier mobility and concentration of undoped GaSb epi-layers are about 600 cm^2/Ⅴ·s and 2~4×10^(16)cm^(-3)at room temperature,respectively.The low temperature(77K)mobility is about 5 times of the room temperature's one.The low temperature(11K)photoluminescence(PL)spectrum and the temperature depen- dence of PL spectrum were investigated.The red shift of bound exciton with temperature was observed.
文摘In this work,a Cu_(2)ZnSnS_(4)(CZTS)ingot is grown via a melting method,then cooled;the resulting molten stoichiomet-ric mixture is sealed off in a quartz ampoule under vacuum.The CZTS powder chemical composition analyses are determined us-ing energy dispersive spectroscopy,and revealing the slightly Cu-rich and Zn-poor character of the ingot.Powder X-ray diffrac-tion analysis reveals a crystalline structure with a kesterite phase formation,and a preferred orientation of(112)plane.The lat-tice constants of the a-and c-axes,calculated based on the XRD analyses,are a=5.40Åand c=10.84Å.Based on Hall measure-ments at room temperature,we find that the crystal exhibits p-type conductivity,with a high concentration of 1018 cm^(-3),a res-istivity of 1.7Ωcm,and a mobility of 10.69 cm^(2)V-1s-1.Activation energies are estimated based on an Arrhenius plot of conductiv-ity versus 1/T,for a temperature range of 80-350 K,measuring 35 and 160 meV in low-and high-temperature regimes,respect-ively,which is attributed to complex defects(2CuZn+SnZn)and antisite defects(CuZn),respectively.The observed scattering mech-anisms are attributed to ionized impurities and acoustic phonons at low and high temperatures,respectively.The extracted band-gap is 1.37 eV.
文摘For Hall measurement under different magnetic fields at LN2 temperature,Hg1-xCdxTe (MCT) film (radius 1 cm) grown on CdTe substrate by LPE is photoengraved into many small Van Der Pauw squares,then their Hall coefficients and mobilities are measured and analyzed,respectively.Two films were Hall-tested during the temperature range from LHe 4.2 K to about 200 K.An actual impression on the uniformity of electrical parameters for MCT film can obtained by means of the methods presented in this paper.
基金ThispaperissupportedbyNationalNatureScienceFoundationofChina (No 60 1760 2 0 )
文摘The wavelet transformation is applied to the high current transformer.The high current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high current.The principle of the transformer is the Hall direct measurement principle.The transformer has the following three characteristics:firstly, the effect of the remnant field of the iron core on the measurement is decreased;secondly,because the temperature compensation is adopted,the transformer has good temperature charactreristic;thirdly,be cause the wavelet transfomation technology is adopted,the transformer has the capacity of good antijanming.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2018YFB0406502, 2017YFF0210800, and 2017YFB0403003)the National Natural Science Foundation of China (Grant Nos. 61974059, 61674077, and 61774081)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant No. BK20160065)the Fundamental Research Funds for the Central Universities。
文摘Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the growth rate of diamond film decreases gradually, and the nitrogen-vacancy(NV) center luminescence intensity increases first and then weakens. The results show that oxygen in laughing gas has a strong inhibitory effect on formation of NV centers, and the inhibitory effect would be stronger as the concentration of laughing gas increases. As a result, the film growth rate and nitrogen-related compensation donor decrease, beneficial to increase the acceptor concentration(~3.2×10^(19)cm^(-3)) in the film. Moreover, it is found that the optimal regulation with the quality and electrical properties of boron doped diamond films could be realized by adding appropriate laughing gas, especially the hole mobility(~700cm^(2)/V·s), which is beneficial to the realization of high-quality boron doped diamond films and high-level optoelectronic device applications in the future.
文摘Background The construction of China Spallation Neutron Source(CSNS)was started in 2011 and will be completed in 2018.The phase I CSNS facility consists of an 80MeV HLinac,a 1.6GeV Proton Rapid Cycling Synchrotron(RCS),two beam transport lines and a target station.Magnets in the RCS and transport lines should be measured before being installed in the tunnel.Method In this paper,a new hall probe measurement system is described.The design and performance of the hall probe measurement system is presented.Conclusions The measurement results meet the design requirements.Some key issues were solved in the process.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61474104 and 61504131)
文摘Undoped p-type Ga Sb single crystals were annealed at 550–600℃ for 100 h in ambient antimony. The annealed Ga Sb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy(GDMS), infrared(IR)optical transmission and photoluminescence(PL) spectroscopy. Compared with the as-grown Ga Sb single crystal, the annealed Ga Sb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the Ga Sb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed.
文摘We have recently demonstrated that GaAs nanosheets can be grown by metal-organic chemical vapor deposition (MOCVD). Here, we investigate these nanosheets by secondary electron scanning electron microscopy (SE-SEM) and electron beam induced current (EBIC) imaging. An abrupt boundary is observed between an initial growth region and an overgrowth region in the nanosheets. The SE-SEM contrast between these two regions is attributed to the inversion of doping at the boundary. EBIC mapping reveals a p-n junction formed along the boundary between these two regions. Rectifying I-V behavior is observed across the boundary further indicating the formation of a p-n junction. The electron concentration (ND) of the initial growth region is around 1 × 10^18 cm^-3, as determined by both Hall effect measurements and low temperature photoluminescence (PL) spectroscopy. Based on the EBIC data, the minority carrier diffusion length of the nanosheets is 177 nm, which is substantially longer than the corresponding length in unpassivated GaAs nanowires measured previously.
基金supported by the National Natural Science Foundation of China(Grant No.61474104)
文摘Defects in Sb implanted Zn O single crystals have been studied by using photoluminescence(PL) spectroscopy,X-ray diffraction(XRD) and Raman scattering.Electrical properties of the samples were analyzed by Hall effect measurement.The results indicate that the annealed Sb-implanted sample is n-type with a free electron concentration of the same amplitude as the calculated implantation concentration.The well-known oxygen vacancy related deep level green PL band is suppressed in the as-implanted sample and recovers to the level close to the as-grown Zn O single crystal after annealing.These phenomena suggest that a large portion of as-implanted Sb atoms occupy oxygen lattice site in an unstable state and move to the interstitial site,forming the complex donor defect upon high temperature annealing,resulting in n-type conduction even if the implantation dose is quite high.
基金Project supported by the Algerian Ministry of Higher Education and Scientific Research,Algeria(No.J0101520090018)
文摘Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90 ℃.The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques.Deposited films were obtained at-0.60 V vs.SCE and characterized by XRD,SEM,FTIR,optical,photoelectrochemical and electrical measurements.Thickness of the deposited film was measured to be357 nm.X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along(002) plane.FTIR results confirmed the presence of ZnO films at peak558 cm^-1.SEM images showed uniform,compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape.Optical properties of ZnO reveal a high optical transmission(〉80%)and high absorption coefficient(α 〉 10^5 cm^-1) in visible region.The optical energy band gap was found to be 3.28 eV.Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction.Electrical properties of ZnO films showed a low electrical resistivity of 6.54 Ω·cm,carrier concentration of-1.3× 10^17cm^-3 and mobility of 7.35 cm^2V^-1s^-1.
基金Project supported by the National Natural Science Foundation of China(Nos.61474104,61504131)
文摘GaSb is the most suitable substrate in the epitaxial growth of mixed semiconductors of GaSb system.In this work,Te-doped GaSb bulk crystals with different doping concentration have been annealed at 550℃ for100 h in ambient antimony.The annealed samples have been studied by Hall effect measurement,infrared(IR)optical transmission,Glow discharge mass spectroscopy(GDMS) and photoluminescence(PL) spectroscopy.After annealing,Te-doped GaSb samples exhibit a decrease of carrier concentration and increase of mobility,along with an improvement of below gap IR transmission.Native acceptor related electrical compensation analysis suggests a formation of donor defect with deeper energy level.The mechanism of the variation of the defect and its influence on the material properties are discussed.