Recent theoretical predictions and experimental findings on the transport properties of n-type SnTe have triggered extensive researches on this simple binary compound,despite the realization of n-type SnTe being a gre...Recent theoretical predictions and experimental findings on the transport properties of n-type SnTe have triggered extensive researches on this simple binary compound,despite the realization of n-type SnTe being a great challenge.Herein,Cl as a donor dopant can effectively regulate the position of Fermi level in Sn_(0.6)Pb_(0.4)Te matrix and successfully achieve the n-type transport behavior in SnTe.An outstanding power factor of~14.7μW·cm^(-1)·K^(-2) at 300 K was obtained for Cl-doped Sn_(0.6)Pb_(0.4)Te sample.By combining the experimental analysis with theoretical calculations,the transport properties of n-type SnTe thermoelectrics doped with different halogen dopants(Cl,Br,and I)were then systematically investigated and estimated.The results demonstrated that Br and I had better doping efficiencies compared with Cl,which contributed to the well-optimized carrier concentrations of~1.03×10^(19)and~1.11×10^(19)cm^(-3)at 300 K,respectively.The improved n-type carrier concentrations effectively lead to the significant enhancement on the thermoelectric performance of n-type SnTe.Our study further promoted the experimental progress and deep interpretation of the transport features in n-type SnTe thermoelectrics.The present results could also be crucial for the development of n-type counterparts for SnTe-based thermoelectric devices.展开更多
Three-dimensional hierarchical structure coral-like BaTiO3 nanoparticles have been self-assembled by a facile one step hydrothermal method. Cetyltrimethyl ammonium bromide(CTAB),Ba(OH)2·8H2O and tetrabutyl titana...Three-dimensional hierarchical structure coral-like BaTiO3 nanoparticles have been self-assembled by a facile one step hydrothermal method. Cetyltrimethyl ammonium bromide(CTAB),Ba(OH)2·8H2O and tetrabutyl titanate have been used as precursors. The prepared Ba TiO3 exhibits cubic perovskite phase at room temperature,and the coral-like architecture is a micro-nano hiberarchy consisted of dendrimer-like structure and trunk-like structure. By adjusting the hydrothermal duration and the precursor substances,a surfactant induced mechanism is proposed to understand the self-assembly process. UV-vis measurement demonstrates that the as-prepared Ba TiO3 nanoparticles exhibit dozens of times overwhelming absorptive character compared to the ordinary nanospheres at ultraviolet band,which is benefited from the coral-like porous framework. Moreover,halogen anions( F,Cl,Br,and I) have been chosen to adjust the coral-like Ba TiO3 physical properties. Results show the halogen doping produces distinct modulation effect on the grain size,UV-vis absorbance and photoluminescence properties of the materials. The coral-like BaTiO3 nanoparticle and its halogen modified ramifications offer significant opportunities to develop nano-laser devices,photon detectors,photocatalyst based on BaTiO3 perovskite materials.展开更多
基金supported by the National Natural Science Foundation of China(No.52002042)the National Postdoctoral Program for Innovative Talents(No.BX20200028)+3 种基金the National Key Research and Development Program of China(No.2018YFA0702100)China Postdoctoral Science Foundation(No.2021M690280)the Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxmX0554)the support from the National Science Fund for Distinguished Young Scholars(No.51925101)。
文摘Recent theoretical predictions and experimental findings on the transport properties of n-type SnTe have triggered extensive researches on this simple binary compound,despite the realization of n-type SnTe being a great challenge.Herein,Cl as a donor dopant can effectively regulate the position of Fermi level in Sn_(0.6)Pb_(0.4)Te matrix and successfully achieve the n-type transport behavior in SnTe.An outstanding power factor of~14.7μW·cm^(-1)·K^(-2) at 300 K was obtained for Cl-doped Sn_(0.6)Pb_(0.4)Te sample.By combining the experimental analysis with theoretical calculations,the transport properties of n-type SnTe thermoelectrics doped with different halogen dopants(Cl,Br,and I)were then systematically investigated and estimated.The results demonstrated that Br and I had better doping efficiencies compared with Cl,which contributed to the well-optimized carrier concentrations of~1.03×10^(19)and~1.11×10^(19)cm^(-3)at 300 K,respectively.The improved n-type carrier concentrations effectively lead to the significant enhancement on the thermoelectric performance of n-type SnTe.Our study further promoted the experimental progress and deep interpretation of the transport features in n-type SnTe thermoelectrics.The present results could also be crucial for the development of n-type counterparts for SnTe-based thermoelectric devices.
基金financially supported by the One Hundred Talents Project Foundation Program (1029271301)the Western Light Talent Culture Project (Grant No.RCPY201206) of Chinese Academy of Sciences+1 种基金the National Natural Science Foundation of China (Grant Nos.41302029 and 41130746)the International Technology Cooperation Foundation of Autonomous Region (20136009)
文摘Three-dimensional hierarchical structure coral-like BaTiO3 nanoparticles have been self-assembled by a facile one step hydrothermal method. Cetyltrimethyl ammonium bromide(CTAB),Ba(OH)2·8H2O and tetrabutyl titanate have been used as precursors. The prepared Ba TiO3 exhibits cubic perovskite phase at room temperature,and the coral-like architecture is a micro-nano hiberarchy consisted of dendrimer-like structure and trunk-like structure. By adjusting the hydrothermal duration and the precursor substances,a surfactant induced mechanism is proposed to understand the self-assembly process. UV-vis measurement demonstrates that the as-prepared Ba TiO3 nanoparticles exhibit dozens of times overwhelming absorptive character compared to the ordinary nanospheres at ultraviolet band,which is benefited from the coral-like porous framework. Moreover,halogen anions( F,Cl,Br,and I) have been chosen to adjust the coral-like Ba TiO3 physical properties. Results show the halogen doping produces distinct modulation effect on the grain size,UV-vis absorbance and photoluminescence properties of the materials. The coral-like BaTiO3 nanoparticle and its halogen modified ramifications offer significant opportunities to develop nano-laser devices,photon detectors,photocatalyst based on BaTiO3 perovskite materials.