期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The promoting role of minor amount of water in solvent-free hydrogenation of halogenated nitrobenzenes 被引量:3
1
作者 Jing-Hui Lyu Xiao-Bo He +5 位作者 Chun-Shan Lu Lei Ma Qun-Feng Zhang Feng Feng Xiao-Nian Li Jian-Guo Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第2期205-208,共4页
This study shows that minor amount of water plays a very important role in solvent-free hydrogenation of halogenated nitrobenzenes. For dried sponge Pd, the reaction cannot occur in the absence of water. For Pd/C cata... This study shows that minor amount of water plays a very important role in solvent-free hydrogenation of halogenated nitrobenzenes. For dried sponge Pd, the reaction cannot occur in the absence of water. For Pd/C catalyst, minor amount of water reduces the induction time, increases the reaction rate and reaction TOFs. Water might enhance the diffusion, adsorption and dissociation of H2 on Pd catalysts. 展开更多
关键词 halogenated nitrobenzenes Solvent Free WATER HYDROGENATION
原文传递
Room-temperature hydrogenation of halogenated nitrobenzenes over metal-organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles 被引量:2
2
作者 Yuemin Lin Yuanyuan Zhang +9 位作者 Renfeng Nie Kai Zhou Yao Ma Mingjie Liu Dan Lu Zongbi Bao Qiwei Yang Yiwen Yang Qilong Ren Zhiguo Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第12期1782-1792,共11页
Ultra-dispersed Ni nanoparticles(7.5 nm)on nitrogen-doped carbon nanoneedles(Ni@NCNs)were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to c... Ultra-dispersed Ni nanoparticles(7.5 nm)on nitrogen-doped carbon nanoneedles(Ni@NCNs)were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to corresponding anilines.Two different crystallization methods(stirring and static)were compared and the optimal pyrolysis temperature was explored.Ni@NCNs were systematically characterized by wide analytical techniques.In the hydrogenation of p-chloronitrobenzene,Ni@NCNs-600(pyrolyzed at 600°C)exhibited extraordinarily high performance with 77.9 h^(–1)catalytic productivity and>99%p-chloroaniline selectivity at full p-chloronitrobenzene conversion under mild conditions(90°C,1.5 MPa H2),showing obvious superiority compared with reported Ni-based catalysts.Notably,the reaction smoothly proceeded at room temperature with full conversion and>99%selectivity.Moreover,Ni@NCNs-600 afforded good tolerance to various nitroarenes substituted by sensitive groups(halogen,nitrile,keto,carboxylic,etc.),and could be easily recycled by magnetic separation and reused for 5 times without deactivation.The adsorption tests showed that the preferential adsorption of–NO2 on the catalyst can restrain the dehalogenation of p-chloronitrobenzene,thus achieving high p-chloroaniline selectivity.While the high activity can be attributed to high Ni dispersion,special morphology,and rich pore structure of the catalyst. 展开更多
关键词 halogenated nitrobenzenes room-temperature hydrogenation Ni nanoparticles nitrogen-doped carbon nanoneedles metal–organic-framework
原文传递
High halogenated nitrobenzene hydrogenation selectivity over nano Ir particles 被引量:2
3
作者 Lei Ma Jianguo Wang +4 位作者 Hanbing Wang Qunfeng Zhang Chunshan Lu Xiaobo He Xiaonian Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第3期306-312,共7页
The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size ... The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene. 展开更多
关键词 halogenated nitrobenzene Selective hydrogenation Sub-nano lr Density functional
下载PDF
N-doped ordered mesoporous carbon as a multifunctional support of ultrafine Pt nanoparticles for hydrogenation of nitroarenes 被引量:8
4
作者 梁继芬 张晓明 +1 位作者 景铃胭 杨恒权 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第7期1252-1260,共9页
Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind ... Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity. 展开更多
关键词 N-doped mesoporous carbon Multifunctional support Ultrafine platinum nanoparticle Hydrogenation reaction halogenated nitrobenzene
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部