Germination of seeds and growth of seedling respond to seed priming as priming can guard the damage of salinity stress. A study conducted in the net house of the Department of Agronomy, BAU, Mymensingh during the peri...Germination of seeds and growth of seedling respond to seed priming as priming can guard the damage of salinity stress. A study conducted in the net house of the Department of Agronomy, BAU, Mymensingh during the period from November 2012 to April 2013 investigated the ameliorative effect of seed priming on seed germination and seedling attributes of maize under various salinity stress conditions. The experiment consisted of five seed priming and four salinity levels (NaCl) and laid out in a Completely Randomized Design (CRD) with three replications. Seed germination and seedling attributes of maize varied due to salinity stress and priming. The highest seed germination (95.7%) was recorded when no stress was imposed under hydropriming (48 hours). The germination of seeds performed even well (92.3%) when treated with hydropriming (48 hours) and NaCl@0.25 dS·m-1 which was followed by hydropriming (24 hours) under no salinity imposed and NaCl@0.25 dS·m-1 salinity. Hydropriming for 48 hours without salt stress performed the best on number of leaves seedling-1 (8), shoot length (28.2 cm), root length (14.5 cm), fresh weight (100.8 g) and dry weight of seedling (50.3 g). The germination and seedling growth parameters were reduced with the increase in salinity levels irrespective of priming while all seed priming treatments showed ameliorative effects. However, reduction in seed germination and seedling attributes were minimal with hydropriming for 48 hours. The results revealed that priming of maize seeds could be used for amelioration of salinity stress and hydropriming for 48 hours appeared as the best seed priming treatment.展开更多
In order to assess whether salt tolerance could be Improved In spring wheat (Triticum aestivum L.), the present study was performed by soaking the seeds of two cultlvars, namely MH-97 (salt sensitive) and Inqlab-...In order to assess whether salt tolerance could be Improved In spring wheat (Triticum aestivum L.), the present study was performed by soaking the seeds of two cultlvars, namely MH-97 (salt sensitive) and Inqlab-91 (salt tolerant), for 12 h In distilled water or 100 mol/m^3 CaCl2, KCI, or NaCI. Primed seeds from each treatment group and non-primed seeds were sown In a field In which NaCI salinity of 15 dS/m was developed. Priming of seeds with CaCl2, followed by priming with KCI and NaCI, was found to be effective In alleviating the adverse effects of salt stress on both wheat cultivars In terms of shoot fresh and dry weights and grain yield. Priming with CaCl2 alleviated the adverse effects of salt stress on hormonal balance In plants of both cultlvars. In MH-97 plants, CaCl2 pretreatment considerably reduced leaf absclslc acid (ABA) concentrations and Increased leaf free salicylic acid (SA) concentrations under both saline and non-saline conditions. In contrast, In the Inqlab-91 plant, CaCl2 Increased free Indoleacetic acid (IAA) and indolebutyrlc acid (IBA) content. However, priming of seeds with CaCl2 did not alter free polyamlne levels in either cultlvar, although spermldlne levels were considerably lower In plants raised from seeds treated with CaCl2 for both cultlvars under saline conditions. Priming with KCI Increased growth In Inqlab-91 plants, but not In MH-97 plants, under saline conditions. The salinity Induced reducUon In auxins (IAA and IBA) was alleviated by NaCI priming In both cultlvars under saline conditions. However, NaCI Increased leaf free ABA content and lowered leaf SA and putresclne levels In Inqlab-91 plants under saline conditions. In conclusion, although all three priming agents (I.e. CaCl2, KCI, and NaCI) were effective In alleviating the adverse effects of salt stress on wheat plants, their effects on altering the levels of different plant hormones were different In the two cuItlvars.展开更多
文摘Germination of seeds and growth of seedling respond to seed priming as priming can guard the damage of salinity stress. A study conducted in the net house of the Department of Agronomy, BAU, Mymensingh during the period from November 2012 to April 2013 investigated the ameliorative effect of seed priming on seed germination and seedling attributes of maize under various salinity stress conditions. The experiment consisted of five seed priming and four salinity levels (NaCl) and laid out in a Completely Randomized Design (CRD) with three replications. Seed germination and seedling attributes of maize varied due to salinity stress and priming. The highest seed germination (95.7%) was recorded when no stress was imposed under hydropriming (48 hours). The germination of seeds performed even well (92.3%) when treated with hydropriming (48 hours) and NaCl@0.25 dS·m-1 which was followed by hydropriming (24 hours) under no salinity imposed and NaCl@0.25 dS·m-1 salinity. Hydropriming for 48 hours without salt stress performed the best on number of leaves seedling-1 (8), shoot length (28.2 cm), root length (14.5 cm), fresh weight (100.8 g) and dry weight of seedling (50.3 g). The germination and seedling growth parameters were reduced with the increase in salinity levels irrespective of priming while all seed priming treatments showed ameliorative effects. However, reduction in seed germination and seedling attributes were minimal with hydropriming for 48 hours. The results revealed that priming of maize seeds could be used for amelioration of salinity stress and hydropriming for 48 hours appeared as the best seed priming treatment.
基金Publication of this paper is supported by the National Natural Science Foundation of China (30424813) and Science Publication Foundation of CAS.
文摘In order to assess whether salt tolerance could be Improved In spring wheat (Triticum aestivum L.), the present study was performed by soaking the seeds of two cultlvars, namely MH-97 (salt sensitive) and Inqlab-91 (salt tolerant), for 12 h In distilled water or 100 mol/m^3 CaCl2, KCI, or NaCI. Primed seeds from each treatment group and non-primed seeds were sown In a field In which NaCI salinity of 15 dS/m was developed. Priming of seeds with CaCl2, followed by priming with KCI and NaCI, was found to be effective In alleviating the adverse effects of salt stress on both wheat cultivars In terms of shoot fresh and dry weights and grain yield. Priming with CaCl2 alleviated the adverse effects of salt stress on hormonal balance In plants of both cultlvars. In MH-97 plants, CaCl2 pretreatment considerably reduced leaf absclslc acid (ABA) concentrations and Increased leaf free salicylic acid (SA) concentrations under both saline and non-saline conditions. In contrast, In the Inqlab-91 plant, CaCl2 Increased free Indoleacetic acid (IAA) and indolebutyrlc acid (IBA) content. However, priming of seeds with CaCl2 did not alter free polyamlne levels in either cultlvar, although spermldlne levels were considerably lower In plants raised from seeds treated with CaCl2 for both cultlvars under saline conditions. Priming with KCI Increased growth In Inqlab-91 plants, but not In MH-97 plants, under saline conditions. The salinity Induced reducUon In auxins (IAA and IBA) was alleviated by NaCI priming In both cultlvars under saline conditions. However, NaCI Increased leaf free ABA content and lowered leaf SA and putresclne levels In Inqlab-91 plants under saline conditions. In conclusion, although all three priming agents (I.e. CaCl2, KCI, and NaCI) were effective In alleviating the adverse effects of salt stress on wheat plants, their effects on altering the levels of different plant hormones were different In the two cuItlvars.