Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the...Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance of proactive measures to adapt to climate change in the future.展开更多
Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting ac...Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.展开更多
The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was a...The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was above 11%. The seedlings were able to take up water from soil with above 6 % soil water content, which was the threshold level of soil moisture for seedlings. The relationship between transpiration and potential evaporation was linear for well-watered seedlings. The de-crease of soil water availability led to different degrees of down-regulation of stomatal conductance, leaf transpiration and net CO2 assimilation rate. The stomata played a relatively small part in determining the net CO2 assimilation rate for the same seedling. The relationship between net CO2 assimilation rate and transpiration was linear diurnally, and reduction scale of leaf transpiration was much bigger than that of net CO2 assimilation rate by waters tress treatments, therefore intrinsic wa-ter-use-efficiency increased. High evaporative demand increased the leaf transpiration but inhibited net CO2 assimilation rate. Because of the effect of VPD on transpiration in this region, the transpiration of well-watered and mild water stress seedlings becomes responsive to change in stomatal conductance over a wider range.展开更多
Haloxylon ammodendron, a typical desert shrub with C4 pathway of photosynthesis, possessing a strong ability to adapt to an extreme drought environment, has a rapid growth rate in sandy lands and is widely used in san...Haloxylon ammodendron, a typical desert shrub with C4 pathway of photosynthesis, possessing a strong ability to adapt to an extreme drought environment, has a rapid growth rate in sandy lands and is widely used in sand-fixing shelter-forest systems in oasis-desert ecotones. To assess the effects of H. ammodendron plantation on the soil, we measured soil properties and herbaceous characteristics along a nearly 40-year chronosequence after H. ammodendron was planted in shifting sand dunes in an oasis-desert ecotone. Results showed that silt and clay fractions increased significantly in the topsoil. The accumulation rates of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) were faster in the early stages (0-9 years) and slower in the late stages (9-39 years). The soil pH and electrical conductivity (EC) were higher than those in the non-vegetation dunes. Moreover, the soil properties in the topsoil (0-5 cm) showed larger variation scope than those in the deeper soil layers (5-20 cm). The significant relationships of the soil silt+clay content with the chemical properties mainly appeared in the topsoil. The wind erosion susceptibility of the soil, evaluated by erodible fraction (EF), decreased significantly with increasing H. ammodendron plantation age. Additionally, the annual pioneer herb, Agriophyllum squarrosum, was gradually substituted by the annual salt-tolerant herb, Bassia dasyphylla, with increasing plantation age. These results showed beneficial effects of H. ammodendron plantation on improving soil conditions. However, the dynamics of the herbaceous species also reminded us that the long- term effects of H. ammodendron plantation, especially on changes in vegetation composition, still need further evaluation.展开更多
Haloxylon ammodendron (C. A. Mey.) Bunge is a host for the holoparasitic plant Cistanche deserticola Y. C. Ma, the original source of medicinal material known as Herba Cistanchis. The inter-simple sequence repeat ma...Haloxylon ammodendron (C. A. Mey.) Bunge is a host for the holoparasitic plant Cistanche deserticola Y. C. Ma, the original source of medicinal material known as Herba Cistanchis. The inter-simple sequence repeat marker was used to assess the genetic variations and relationships among six accessions ofH. ammodendron with a total of 120 individuals collected from three localities in the Alxa Desert, Inner Mongolia, China. At each locality, individuals both parasitized (PP) by C. deserticola and non-parasitized (NP) were sampled. The results showed that Nei's gene diversity and Shannon's index of PP accessions were higher, but were not significantly different, from those of NP accessions. An unweighted pair-group method arithmetic average dendrogram showed two clusters, one that included all PP accessions, and the other the NP accessions. Genetic differentiation therefore existed between PP and NP accessions, which might be attributed to low gene flow between the NP and PP groups (Nm〈 1). However, the relationship between genetic distance and geographic distance within each group, although not statistically significant in this study, might be associated with high gene flow in both the NP and PP groups.展开更多
Haloxylon ammodendron (C. A. Mey.) is one of the economically and ecologically important desert trees used for sand fixation. The ovary of H. ammodendron is found not to swell after flowering in spring until at the ...Haloxylon ammodendron (C. A. Mey.) is one of the economically and ecologically important desert trees used for sand fixation. The ovary of H. ammodendron is found not to swell after flowering in spring until at the end of August or early September in western China. However, what happens for ovary at anatomic level in that period and which crucial ecological factor regulates the phenomenon of H. ammodendron have not been fully understood. To characterize the phenomenon and explore the crucial environmental regulating factors, we carried out the morphological and anatomic observations at the different development stages of the fruits and three single-factor experiments (low air temperature, sufficient soil moisture, and short day length). Our results showed that under the natural conditions, the ovary of H. ammodendron after flowering developed slowly and the morphological changes of fruits were not significant for the period from May to August and after late August or early September; and then the ovary developed rapidly and matured in October. Cell division in embryo was observed to start approximately 25 days after flowering (DAF) and just developed to globular embryo stage at mid-August. Photoperiod was identified as the pivotal environmental factor regulating the fruit development of H. ammodendron. Moreover, the threshold value of day length for the fruit development was 14.0 h. A long day (〉14.0 h) treatment began from 5 DAF could delay fruit development of H. ammodendron while a short day (〈14.0 h) treatment could accelerate it. Moreover, a further longer day treatment (〉15.0 h) could also delay fruit development even when they had developed for a long time (110 DAF). The present study indicated that H. ammodendron adopted a reproductive strategy of delayed fruit development and this strategy helps it survive and obtain offspring in harsh desert habitats.展开更多
Competition,spatial pattern,and regeneration are important factors affecting community composition,structure,and dynamics.In this study,we surveyed 300 quadrats from three dunes(i.e.,fixed dunes,semifixed dunes,and mo...Competition,spatial pattern,and regeneration are important factors affecting community composition,structure,and dynamics.In this study,we surveyed 300 quadrats from three dunes(i.e.,fixed dunes,semifixed dunes,and mobile dunes)in the Gurbantunggut Desert,Northwest China,from late May to early June in 2021.The intraspecific and interspecific competition,spatial pattern,and regeneration of Haloxylon ammodendron and Haloxylon persicum were studied using the Hegyi competition index and point pattern analysis methods.The results showed that the optimal competition distance of the objective tree in the H.ammodendron and H.persicum communities was 6 m.The intraspecific and interspecific competition of H.ammodendron was the greatest in fixed dunes,while the competition intensity of H.persicum in semifixed dunes and mobile dunes was greater than that in fixed dunes.The order of competition intensity of the two populations was seedlings>saplings>adults,and the competition intensity gradually decreased with the increase in plant diameter.The spatial distribution pattern of the three life stages of H.ammodendron and H.persicum was random,and there were no correlations between seedlings and saplings,adults and saplings,and seedlings and adults.The density of regenerated seedlings and saplings of H.ammodendron in the three dunes followed the order of fixed dunes>semifixed dunes>mobile dunes,and that of H.persicum in the three dunes followed the order of mobile dunes>semifixed dunes>fixed dunes.Therefore,when artificially planting H.ammodendron and H.persicum for sand control,the planting interval should be 6 m,and seedlings should be planted next to adults to minimize the competition between plants,which can promote the renewal of H.ammodendron and H.persicum and the stabilization of the ecosystem.展开更多
We studied pot cultivated Haloxylon ammodendron's growth, physiological changes and drought resistance under NaC1, H2SiO3, and NaCl+H2SiO3 treatments. Results show that 0.3 g/kg NaC1, 0.2 g/kg HzSiO3 or 0.3 g/kg NaC...We studied pot cultivated Haloxylon ammodendron's growth, physiological changes and drought resistance under NaC1, H2SiO3, and NaCl+H2SiO3 treatments. Results show that 0.3 g/kg NaC1, 0.2 g/kg HzSiO3 or 0.3 g/kg NaCI+0.1 g/kg H2SiO3 treatments can effectively promote growth and improve the drought resistance of/-L, ammodendron. Compared with that without NaCI treatment, H. ammodendron's height, crown diameter and fresh weight increased by 42%, 91% and 62% respectively under 0.3 g/kg NaC1 treatment, and its main stem diameter, main root diameter and main root length increased by 40%, 39% and 23%, respectively. Compared with that without H2SiO3 treatments, H. ammodendron's height, crown diameter and flesh weight increased by 36%, 45% and 27% respectively under 0.2 g/kg HeSiO3 treatment, and its main stem diameter, main root diameter and main root length increased by 23%, 23% and 20%, respectively. Compared with that under 0.3 g/kg NaC1 treatment, H. ammodendron's height, crown diameter and fresh weight and main root length increased by 9%, 10%, 17% and 12% respectively under 0.3 g/kg NaCI+0.1 g/kg H2SiO3 treatment. Compared with that under 0.1 g/kg H2SiO3 treatment, H. ammodendron's height, crown diame- ter and fresh weight increased by 28%, 76% and 68% respectively under 0.3 g/kg NaCI+0.1 g/kg H2SiO3 treatment, and its main stem diameter, main root diameter and main root length increased by 30%, 32% and 27%, respectively. This suggests that moder- ate levels of NaCI+H2SiO3 interaction can effectively promote growth and improve drought resistance of/-L, ammodendron than separate applications of NaC1 or H2SiO3.展开更多
[ Objective ] The aim was to select appropriate sterilization methods and explants for tissue culture of Haloxylon ammodendron ( C. A. Mey. ). [Method] H. ammodendron (C. A. Mey. ) seeds were used as experimental ...[ Objective ] The aim was to select appropriate sterilization methods and explants for tissue culture of Haloxylon ammodendron ( C. A. Mey. ). [Method] H. ammodendron (C. A. Mey. ) seeds were used as experimental materials to investigate the sterilization results of different sterilization treatments and the effect of different seed sizes on the survival rate of aseptic seedlings. [ Result] Sterilization of H. ammodendron ( C.A. Mey. ) seeds achieved the best result by using 75% alcohol for 15 min and 0.1% mercuric chloride for 8 min. Seeds with diameter φ 〉 2.0 mm were used as explants and achieved relatively high surviv- al rate of aseptic seedlings, which reached above 65%. [ Conclusion] This study established a surface sterilization method for tissue culture of H. ammodendron ( C. A. Mey. ) Bunge seeds.展开更多
Haloxylon ammodendron, with its tolerance of drought, high temperature, and salt alkali conditions, is one of the main sand-fixing plant species in the oasis-desert transition zone in China. This study used the TDP30(...Haloxylon ammodendron, with its tolerance of drought, high temperature, and salt alkali conditions, is one of the main sand-fixing plant species in the oasis-desert transition zone in China. This study used the TDP30(where TDP is the thermal dissipation probe) to measure hourly and daily variations in the stem sap flow velocity of H. ammodendron at three age-classes(10, 15, and 20 years old,which were denoted as H10, H15, and H20, respectively) in the Minqin oasis-desert transition zone,China, from May through October 2020. By simultaneously monitoring temperature, relative humidity,photosynthetically active radiation, wind speed, net radiation, rainfall, and soil moisture in this region, we comprehensively investigated the stem sap flow velocity of different-aged H. ammodendron plants(H10,H15, and H20) and revealed its response to physical factors. The results showed that, on sunny days, the hourly variation curves of the stem sap flow velocity of H. ammodendron plants at the three age-classes were mainly unimodal. In addition, the stem sap flow velocity of H. ammodendron plants decreased significantly from September to October, which also delayed its peak time of hourly variation. On rainy days, the stem sap flow velocity of H. ammodendron plants was multimodal and significantly lower than that on sunny days.Average daily water consumption of H. ammodendron plants at H10, H15, and H20 was 1.98, 2.82, and 1.91kg/d, respectively. Temperature was the key factor affecting the stem sap flow velocity of H. ammodendron at all age-classes. Net radiation was the critical factor influencing the stem sap flow velocity of H.ammodendron at H10 and H15;however, for that at H20, it was vapor pressure deficit. The stem sap flow velocity of H. ammodendron was highly significantly correlated with soil moisture at the soil depths of 50and 100 cm, and the correlation was strengthened with increasing stand age. Altogether, our results revealed the dynamic changes of the stem sap flow velocity in different-aged H. ammodendron forest stands and its response mechanism to local physical factors, which provided a theoretical basis for the construction of new protective forests as well as the restoration and protection of existing ones in this region and other similar arid regions in the world.展开更多
基金supported by the the Basic Frontier Project of Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences(E3500201)the Xinjiang Tianshan Talent Program(2022TSYCLJ0002)the Fundamental Research Funds for the Central Universities(ZY20240223).
文摘Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance of proactive measures to adapt to climate change in the future.
文摘Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.
基金Innovation Research Pro-ject of Chinese Academy of Sciences (KZCX1-10-03), National Natural Sciences Foundation of China (90102003), and West Development Technol-ogy Project (2001BA901A42).
文摘The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was above 11%. The seedlings were able to take up water from soil with above 6 % soil water content, which was the threshold level of soil moisture for seedlings. The relationship between transpiration and potential evaporation was linear for well-watered seedlings. The de-crease of soil water availability led to different degrees of down-regulation of stomatal conductance, leaf transpiration and net CO2 assimilation rate. The stomata played a relatively small part in determining the net CO2 assimilation rate for the same seedling. The relationship between net CO2 assimilation rate and transpiration was linear diurnally, and reduction scale of leaf transpiration was much bigger than that of net CO2 assimilation rate by waters tress treatments, therefore intrinsic wa-ter-use-efficiency increased. High evaporative demand increased the leaf transpiration but inhibited net CO2 assimilation rate. Because of the effect of VPD on transpiration in this region, the transpiration of well-watered and mild water stress seedlings becomes responsive to change in stomatal conductance over a wider range.
基金funded by the National Natural Science Foundation of China(41401337)
文摘Haloxylon ammodendron, a typical desert shrub with C4 pathway of photosynthesis, possessing a strong ability to adapt to an extreme drought environment, has a rapid growth rate in sandy lands and is widely used in sand-fixing shelter-forest systems in oasis-desert ecotones. To assess the effects of H. ammodendron plantation on the soil, we measured soil properties and herbaceous characteristics along a nearly 40-year chronosequence after H. ammodendron was planted in shifting sand dunes in an oasis-desert ecotone. Results showed that silt and clay fractions increased significantly in the topsoil. The accumulation rates of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) were faster in the early stages (0-9 years) and slower in the late stages (9-39 years). The soil pH and electrical conductivity (EC) were higher than those in the non-vegetation dunes. Moreover, the soil properties in the topsoil (0-5 cm) showed larger variation scope than those in the deeper soil layers (5-20 cm). The significant relationships of the soil silt+clay content with the chemical properties mainly appeared in the topsoil. The wind erosion susceptibility of the soil, evaluated by erodible fraction (EF), decreased significantly with increasing H. ammodendron plantation age. Additionally, the annual pioneer herb, Agriophyllum squarrosum, was gradually substituted by the annual salt-tolerant herb, Bassia dasyphylla, with increasing plantation age. These results showed beneficial effects of H. ammodendron plantation on improving soil conditions. However, the dynamics of the herbaceous species also reminded us that the long- term effects of H. ammodendron plantation, especially on changes in vegetation composition, still need further evaluation.
基金supported by theSpecial Program for Key Basic Research of the Ministry of Science and Technology, China, Grant No.2004CCA01200
文摘Haloxylon ammodendron (C. A. Mey.) Bunge is a host for the holoparasitic plant Cistanche deserticola Y. C. Ma, the original source of medicinal material known as Herba Cistanchis. The inter-simple sequence repeat marker was used to assess the genetic variations and relationships among six accessions ofH. ammodendron with a total of 120 individuals collected from three localities in the Alxa Desert, Inner Mongolia, China. At each locality, individuals both parasitized (PP) by C. deserticola and non-parasitized (NP) were sampled. The results showed that Nei's gene diversity and Shannon's index of PP accessions were higher, but were not significantly different, from those of NP accessions. An unweighted pair-group method arithmetic average dendrogram showed two clusters, one that included all PP accessions, and the other the NP accessions. Genetic differentiation therefore existed between PP and NP accessions, which might be attributed to low gene flow between the NP and PP groups (Nm〈 1). However, the relationship between genetic distance and geographic distance within each group, although not statistically significant in this study, might be associated with high gene flow in both the NP and PP groups.
基金financially supported by the National Natural Science Foundation of China(31260181)the National Science and Technology Ministry of China(2012GB2G400497)
文摘Haloxylon ammodendron (C. A. Mey.) is one of the economically and ecologically important desert trees used for sand fixation. The ovary of H. ammodendron is found not to swell after flowering in spring until at the end of August or early September in western China. However, what happens for ovary at anatomic level in that period and which crucial ecological factor regulates the phenomenon of H. ammodendron have not been fully understood. To characterize the phenomenon and explore the crucial environmental regulating factors, we carried out the morphological and anatomic observations at the different development stages of the fruits and three single-factor experiments (low air temperature, sufficient soil moisture, and short day length). Our results showed that under the natural conditions, the ovary of H. ammodendron after flowering developed slowly and the morphological changes of fruits were not significant for the period from May to August and after late August or early September; and then the ovary developed rapidly and matured in October. Cell division in embryo was observed to start approximately 25 days after flowering (DAF) and just developed to globular embryo stage at mid-August. Photoperiod was identified as the pivotal environmental factor regulating the fruit development of H. ammodendron. Moreover, the threshold value of day length for the fruit development was 14.0 h. A long day (〉14.0 h) treatment began from 5 DAF could delay fruit development of H. ammodendron while a short day (〈14.0 h) treatment could accelerate it. Moreover, a further longer day treatment (〉15.0 h) could also delay fruit development even when they had developed for a long time (110 DAF). The present study indicated that H. ammodendron adopted a reproductive strategy of delayed fruit development and this strategy helps it survive and obtain offspring in harsh desert habitats.
基金the Open Project of Xinjiang Laboratory of Lake Environment and Resources in Arid Zone(XJDX0909-2022-4)the PhD Early Development Program of Xinjiang Normal University(XJNUBS2113).
文摘Competition,spatial pattern,and regeneration are important factors affecting community composition,structure,and dynamics.In this study,we surveyed 300 quadrats from three dunes(i.e.,fixed dunes,semifixed dunes,and mobile dunes)in the Gurbantunggut Desert,Northwest China,from late May to early June in 2021.The intraspecific and interspecific competition,spatial pattern,and regeneration of Haloxylon ammodendron and Haloxylon persicum were studied using the Hegyi competition index and point pattern analysis methods.The results showed that the optimal competition distance of the objective tree in the H.ammodendron and H.persicum communities was 6 m.The intraspecific and interspecific competition of H.ammodendron was the greatest in fixed dunes,while the competition intensity of H.persicum in semifixed dunes and mobile dunes was greater than that in fixed dunes.The order of competition intensity of the two populations was seedlings>saplings>adults,and the competition intensity gradually decreased with the increase in plant diameter.The spatial distribution pattern of the three life stages of H.ammodendron and H.persicum was random,and there were no correlations between seedlings and saplings,adults and saplings,and seedlings and adults.The density of regenerated seedlings and saplings of H.ammodendron in the three dunes followed the order of fixed dunes>semifixed dunes>mobile dunes,and that of H.persicum in the three dunes followed the order of mobile dunes>semifixed dunes>fixed dunes.Therefore,when artificially planting H.ammodendron and H.persicum for sand control,the planting interval should be 6 m,and seedlings should be planted next to adults to minimize the competition between plants,which can promote the renewal of H.ammodendron and H.persicum and the stabilization of the ecosystem.
基金supported by the National Agricultural Sci-Tech Transformation Foundation of China (Grant No. 2009GB23600512)the National Natural Science Foundation of China (Grant No. 30770347)the National Scientific Research Special Funds of Public Service Sectors of Forestry of China (Grant No. 201004045)
文摘We studied pot cultivated Haloxylon ammodendron's growth, physiological changes and drought resistance under NaC1, H2SiO3, and NaCl+H2SiO3 treatments. Results show that 0.3 g/kg NaC1, 0.2 g/kg HzSiO3 or 0.3 g/kg NaCI+0.1 g/kg H2SiO3 treatments can effectively promote growth and improve the drought resistance of/-L, ammodendron. Compared with that without NaCI treatment, H. ammodendron's height, crown diameter and fresh weight increased by 42%, 91% and 62% respectively under 0.3 g/kg NaC1 treatment, and its main stem diameter, main root diameter and main root length increased by 40%, 39% and 23%, respectively. Compared with that without H2SiO3 treatments, H. ammodendron's height, crown diameter and flesh weight increased by 36%, 45% and 27% respectively under 0.2 g/kg HeSiO3 treatment, and its main stem diameter, main root diameter and main root length increased by 23%, 23% and 20%, respectively. Compared with that under 0.3 g/kg NaC1 treatment, H. ammodendron's height, crown diameter and fresh weight and main root length increased by 9%, 10%, 17% and 12% respectively under 0.3 g/kg NaCI+0.1 g/kg H2SiO3 treatment. Compared with that under 0.1 g/kg H2SiO3 treatment, H. ammodendron's height, crown diame- ter and fresh weight increased by 28%, 76% and 68% respectively under 0.3 g/kg NaCI+0.1 g/kg H2SiO3 treatment, and its main stem diameter, main root diameter and main root length increased by 30%, 32% and 27%, respectively. This suggests that moder- ate levels of NaCI+H2SiO3 interaction can effectively promote growth and improve drought resistance of/-L, ammodendron than separate applications of NaC1 or H2SiO3.
基金Supported by Open Project of Key Laboratory of Tarim Animal Husbandry Science and Technology from Xinjiang Production & Construction Crops(HS20901)
文摘[ Objective ] The aim was to select appropriate sterilization methods and explants for tissue culture of Haloxylon ammodendron ( C. A. Mey. ). [Method] H. ammodendron (C. A. Mey. ) seeds were used as experimental materials to investigate the sterilization results of different sterilization treatments and the effect of different seed sizes on the survival rate of aseptic seedlings. [ Result] Sterilization of H. ammodendron ( C.A. Mey. ) seeds achieved the best result by using 75% alcohol for 15 min and 0.1% mercuric chloride for 8 min. Seeds with diameter φ 〉 2.0 mm were used as explants and achieved relatively high surviv- al rate of aseptic seedlings, which reached above 65%. [ Conclusion] This study established a surface sterilization method for tissue culture of H. ammodendron ( C. A. Mey. ) Bunge seeds.
基金supported by the National Natural Science Foundation of China Subsidization Project (32260425, 31860238)the Natural Science Foundation of Gansu Province, China (32060246, 21JR7RA733)。
文摘Haloxylon ammodendron, with its tolerance of drought, high temperature, and salt alkali conditions, is one of the main sand-fixing plant species in the oasis-desert transition zone in China. This study used the TDP30(where TDP is the thermal dissipation probe) to measure hourly and daily variations in the stem sap flow velocity of H. ammodendron at three age-classes(10, 15, and 20 years old,which were denoted as H10, H15, and H20, respectively) in the Minqin oasis-desert transition zone,China, from May through October 2020. By simultaneously monitoring temperature, relative humidity,photosynthetically active radiation, wind speed, net radiation, rainfall, and soil moisture in this region, we comprehensively investigated the stem sap flow velocity of different-aged H. ammodendron plants(H10,H15, and H20) and revealed its response to physical factors. The results showed that, on sunny days, the hourly variation curves of the stem sap flow velocity of H. ammodendron plants at the three age-classes were mainly unimodal. In addition, the stem sap flow velocity of H. ammodendron plants decreased significantly from September to October, which also delayed its peak time of hourly variation. On rainy days, the stem sap flow velocity of H. ammodendron plants was multimodal and significantly lower than that on sunny days.Average daily water consumption of H. ammodendron plants at H10, H15, and H20 was 1.98, 2.82, and 1.91kg/d, respectively. Temperature was the key factor affecting the stem sap flow velocity of H. ammodendron at all age-classes. Net radiation was the critical factor influencing the stem sap flow velocity of H.ammodendron at H10 and H15;however, for that at H20, it was vapor pressure deficit. The stem sap flow velocity of H. ammodendron was highly significantly correlated with soil moisture at the soil depths of 50and 100 cm, and the correlation was strengthened with increasing stand age. Altogether, our results revealed the dynamic changes of the stem sap flow velocity in different-aged H. ammodendron forest stands and its response mechanism to local physical factors, which provided a theoretical basis for the construction of new protective forests as well as the restoration and protection of existing ones in this region and other similar arid regions in the world.