期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
结合图卷积神经网络和集成方法的推荐系统恶意攻击检测
1
作者 刘慧 纪科 +3 位作者 陈贞翔 孙润元 马坤 邬俊 《计算机科学》 CSCD 北大核心 2024年第S01期940-948,共9页
推荐系统已被广泛应用于电子商务、社交媒体、信息分享等大多数互联网平台中,有效解决了信息过载问题。然而,这些平台面向所有互联网用户开放,导致不法用户利用系统设计缺陷通过恶意干扰、蓄意攻击等行为非法操纵评分数据,进而影响推荐... 推荐系统已被广泛应用于电子商务、社交媒体、信息分享等大多数互联网平台中,有效解决了信息过载问题。然而,这些平台面向所有互联网用户开放,导致不法用户利用系统设计缺陷通过恶意干扰、蓄意攻击等行为非法操纵评分数据,进而影响推荐结果,严重危害推荐服务的安全性。现有的检测方法大多都是基于从评级数据中提取的人工构建特征进行的托攻击检测,难以适应更复杂的共同访问注入攻击,并且人工构建特征费时且区分能力不足,同时攻击行为规模远远小于正常行为,给传统检测方法带来了不平衡数据问题。因此,文中提出堆叠多层图卷积神经网络端到端学习用户和项目之间的多阶交互行为信息得到用户嵌入和项目嵌入,将其作为攻击检测特征,以卷积神经网络作为基分类器实现深度行为特征提取,结合集成方法检测攻击。在真实数据集上的实验结果表明,与流行的推荐系统恶意攻击检测方法相比,所提方法对共同访问注入攻击行为有较好的检测效果并在一定程度上克服了不平衡数据的难题。 展开更多
关键词 攻击检测 共同访问注入攻击 推荐系统 卷积神经网络 卷积神经网络 集成方法
下载PDF
基于时序图卷积的动态网络链路预测
2
作者 刘琳岚 冯振兴 舒坚 《计算机研究与发展》 EI CSCD 北大核心 2024年第2期518-528,共11页
动态网络链路预测广泛的应用前景,使得其逐渐成为网络科学研究的热点.动态网络链路演化过程中具有复杂的空间相关性和时间依赖性,导致其链路预测任务极具挑战.提出一个基于时序图卷积的动态网络链路预测模型(dynamic network link predi... 动态网络链路预测广泛的应用前景,使得其逐渐成为网络科学研究的热点.动态网络链路演化过程中具有复杂的空间相关性和时间依赖性,导致其链路预测任务极具挑战.提出一个基于时序图卷积的动态网络链路预测模型(dynamic network link prediction based on sequential graph convolution, DNLP-SGC).针对网络快照序列不能有效反映动态网络连续性的问题,采用边缘触发机制对原始网络权重矩阵进行修正,弥补了离散快照表示动态网络存在时序信息丢失的不足.从网络演化过程出发,综合考虑节点间的特征相似性以及历史交互信息,采用时序图卷积提取动态网络中节点的特征,该方法融合了节点时空依赖关系.进一步,采用因果卷积网络捕获网络演化过程中潜在的全局时序特征,实现动态网络链路预测.在2个真实的网络数据集上的实验结果表明,DNLP-SGC在precision, recall, AUC指标上均优于对比的基线模型. 展开更多
关键词 动态网络 链路预测 时序图卷积 全局时序特征 因果卷积
下载PDF
密度导向的点云动态图卷积网络
3
作者 刘玉杰 孙晓瑞 +1 位作者 邵文斌 李宗民 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第5期701-710,共10页
针对现有主流网络对于点云局部特征提取的能力不足,以及在特征提取过程中未考虑点云密度的问题,提出一种密度导向的点云动态图卷积网络.首先提出点云局部密度指数的概念,衡量点及其邻域点在相应的空间位置中的密集程度;然后利用局部密... 针对现有主流网络对于点云局部特征提取的能力不足,以及在特征提取过程中未考虑点云密度的问题,提出一种密度导向的点云动态图卷积网络.首先提出点云局部密度指数的概念,衡量点及其邻域点在相应的空间位置中的密集程度;然后利用局部密度指数动态赋予每个点一个膨胀因子,提出密度导向的动态点分组方法对点云构建局部图结构,对每个局部图结构构造动态边缘卷积模块进行特征的提取与聚合,既提取了点云的几何特征,又实现了置换不变性;最后采用残差网络的思想优化图神经网络的过平滑问题.实验结果表明,在分类数据集ModelNet40与ScanObjectNN上,所提网络的分类准确率分别为93.5%和82.2%;在分割数据集ShapeNet与S3DIS上,该网络的平均交并比分别为85.6%和60.4%,均高于DGCNN等主流网络;所提网络在多项任务中的精度都得到显著提升,且在处理密度不均的点云时有较好的鲁棒性,验证了所提算法的可行性与有效性. 展开更多
关键词 点云密度 膨胀因子 动态点分组 动态边缘卷积 卷积网络
下载PDF
域对抗图卷积注意力变工况故障研究
4
作者 邢如意 尹洪申 《组合机床与自动化加工技术》 北大核心 2024年第3期172-176,共5页
针对滚动轴承在变工况环境中网络特征提取能力不足的问题,提出了一种域对抗图卷积注意力迁移学习的故障诊断方法(DAGRESL)。首先,通过残差神经网络(residual network, Resnet)提取输入的轴承故障信息特征并通过Simam注意力模块增强Resne... 针对滚动轴承在变工况环境中网络特征提取能力不足的问题,提出了一种域对抗图卷积注意力迁移学习的故障诊断方法(DAGRESL)。首先,通过残差神经网络(residual network, Resnet)提取输入的轴承故障信息特征并通过Simam注意力模块增强Resnet的特征表达能力;其次,利用图生成层学习Resnet的特征数据并挖掘样本结构特征之间的关系来构造实例图;然后,利用图卷积网络(graph convolutional network, GCN)对实例图进行建模;最后,利用域判别器和局部最大平均差异(local maximum mean discrepancy, LMMD)对齐子域和全局域之间的分布并通过标签分类网络完成故障分类。通过在SQI-MFS轴承数据集的实验结果证明了所提出的DAGRESL模型能够精准地区分变工况轴承故障类型,有效解决了滚动轴承在变工况环境中网络特征提取能力不足的问题。 展开更多
关键词 故障诊断 变工况 卷积注意力模块 卷积
下载PDF
基于深层卷积随机配置网络的电熔镁炉工况识别方法研究
5
作者 李帷韬 童倩倩 +1 位作者 王殿辉 吴高昌 《自动化学报》 EI CAS CSCD 北大核心 2024年第3期527-543,共17页
为解决电熔镁炉工况识别模型泛化能力和可解释性弱的缺陷,提出一种基于深层卷积随机配置网络(Deep convolutional stochastic configuration networks,DCSCN)的可解释性电熔镁炉异常工况识别方法.首先,基于监督学习机制生成具有物理含... 为解决电熔镁炉工况识别模型泛化能力和可解释性弱的缺陷,提出一种基于深层卷积随机配置网络(Deep convolutional stochastic configuration networks,DCSCN)的可解释性电熔镁炉异常工况识别方法.首先,基于监督学习机制生成具有物理含义的高斯差分卷积核,采用增量式方法构建深层卷积神经网络(Deep convolutional neural network,DCNN),确保识别误差逐级收敛,避免反向传播算法迭代寻优卷积核参数的过程.定义通道特征图独立系数获取电熔镁炉特征类激活映射图的可视化结果,定义可解释性可信度评测指标,自适应调节深层卷积随机配置网络层级,对不可信样本进行再认知以获取最优工况识别结果.实验结果表明,所提方法较其他方法具有更优的识别精度和可解释性. 展开更多
关键词 电熔镁炉 深层卷积随机配置网络 高斯差分卷积 类激活映射图 可解释性
下载PDF
基于元学习的图卷积网络少样本学习模型 被引量:1
6
作者 刘鑫磊 冯林 +3 位作者 廖凌湘 龚勋 苏菡 王俊 《电子学报》 EI CAS CSCD 北大核心 2024年第3期885-897,共13页
少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learnin... 少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learning of Graph Convolutional Network on Prototype Space).首先,利用卷积神经网络提取多任务数据的特征向量;其次,为了将特征向量映射到原型空间中,根据元学习的训练策略得到特征向量的类原型表达;然后,通过类原型向量和类向量之间的嵌入表示,构建图结构数据,并进行图卷积网络训练、推理.实验结果表明,相较于经典少样本学习方法,FSL-GCNPS模型拥有更好的分类准确率和分类稳定性.同时,在医学图像领域数据集上实验表明,FSL-GCNPS具有很好的跨域适应性. 展开更多
关键词 元学习 卷积网络 卷积神经网络 少样本学习 原型空间
下载PDF
基于时空图卷积神经网络的管网产量模拟计算
7
作者 张志远 《计算机系统应用》 2024年第6期169-176,共8页
针对原油集输管网的流量计测量数值偏差大,模拟仿真软件人工校正繁琐、自适应差的问题,提出一种自适应时空图卷积神经网络的产量计算方法,实现原油集输管网产量的模拟计算.以潜油电泵井为节点,输油管道为边构建管网拓扑图.使用图卷积神... 针对原油集输管网的流量计测量数值偏差大,模拟仿真软件人工校正繁琐、自适应差的问题,提出一种自适应时空图卷积神经网络的产量计算方法,实现原油集输管网产量的模拟计算.以潜油电泵井为节点,输油管道为边构建管网拓扑图.使用图卷积神经网络提取井分布空间信息,时间卷积神经网络获取产量数据的时间序列特征,计算得到准确的产量模拟计算结果.在某油田原油集输管网系统上进行了实验验证,结果表明本文方法能够准确对管网系统内各电泵井的产量进行计算,与其他基准网络模型相比,各项误差指标均有下降,平均绝对误差降至0.87,平均绝对百分比误差降至4.45%,均方误差降至0.84,证明了提出方法的有效性和准确性. 展开更多
关键词 油气集输 产量计算 卷积神经网络 时间卷积神经网络 时空相关性
下载PDF
基于时空图卷积网络的高速路交通流多步预测
8
作者 高铭 梅朵 《信息技术》 2024年第10期30-36,共7页
针对图卷积网络容易限制模型在交通流预测上有效的学习时空依赖问题,文中提出了一种时空图卷积循环网络(ST-GCRN)模型,首先通过时间卷积层以消除冗余的时间信息,其次,将图卷积网络与改进的门控循环网络相结合以获取时空依赖,最后通过加... 针对图卷积网络容易限制模型在交通流预测上有效的学习时空依赖问题,文中提出了一种时空图卷积循环网络(ST-GCRN)模型,首先通过时间卷积层以消除冗余的时间信息,其次,将图卷积网络与改进的门控循环网络相结合以获取时空依赖,最后通过加入残差的编解码结构解决模型训练梯度消失等问题,从而提高预测准确率,实现多步预测。在加利福尼亚州高速公路数据集上进行了实验,结果表明,该模型的平均绝对误差与均方根误差对比基准模型分别减少了11%、7.5%。 展开更多
关键词 交通流预测 卷积网络 时间卷积网络 门控循环网络 编解码结构
下载PDF
多卷积神经网络的胸部X光片肺结核检测方法
9
作者 崔少国 解筝 宋豪杰 《计算机工程与应用》 CSCD 北大核心 2024年第13期246-254,共9页
由于肺结核病灶区域与正常肺部区域之间的差异微小,导致肺结核疾病难以准确检测。针对此问题,提出了一种基于深度可分离卷积和图卷积相结合的肺结核疾病检测算法。使用深度可分离卷积模块提取图像的局部特征;使用图卷积模块提取图像的... 由于肺结核病灶区域与正常肺部区域之间的差异微小,导致肺结核疾病难以准确检测。针对此问题,提出了一种基于深度可分离卷积和图卷积相结合的肺结核疾病检测算法。使用深度可分离卷积模块提取图像的局部特征;使用图卷积模块提取图像的全局特征;通过一个捷径分支操作,将提取的局部特征和全局特征进行融合;将融合后的特征经过线性层输出检测的结果。算法模型在中国广东省深圳市第三医院收集的公开可用的正面胸部X光片数据集上进行了充分的实验与验证。实验结果表明,所提算法模型与基准模型相比,在Accuracy、Precision、Recall和F1-Score四个评价指标上分别提高了2.98、3.23、2.94和3.08个百分点,从而证明了所提方法的有效性。 展开更多
关键词 X光片 深度可分离卷积 卷积网络 肺结核检测
下载PDF
基于双重注意力时空图卷积网络的行人轨迹预测
10
作者 向晓倩 陈璟 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2586-2595,共10页
当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用... 当前行人轨迹预测研究面临两大挑战:1)如何有效提取行人前后帧之间的时空相关性;2)如何避免在轨迹采样过程中受到采样偏差的影响而导致性能下降.针对以上问题,提出基于双重注意力时空图卷积网络与目的抽样网络的行人轨迹预测模型.利用时间注意力捕获行人前后帧的关联性,利用空间注意力获取周围行人之间的相关性,通过时空图卷积进一步提取行人之间的时空相关性.引入可学习的抽样网络解决随机抽样导致的分布不均匀的问题.大量实验表明,在ETH和UCY数据集上,新方法的精度与当前最先进的方法相当,且模型参数量减少1.65×10^(4),推理时间缩短0.147 s;在SDD数据集上精度虽略有下降,但模型参数量减少了3.46×10^(4),展现出良好的性能平衡,能为行人轨迹预测提供新的有效途径. 展开更多
关键词 轨迹预测 深度学习 卷积网络 时空图卷积 时间注意力 空间注意力 轨迹采样
下载PDF
动态步长卷积及其层间可解释性方法
11
作者 张淑芳 郭子林 +2 位作者 丁文鑫 罗曦哲 郭继昌 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3424-3434,共11页
基于卷积神经网络的图像处理方法将卷积步长设置为与输入图像无关的固定值,输入图像的重要区域和不重要区域分配的卷积资源相等,从而导致资源分配不合理和网络冗余.针对该问题,本文提出动态步长卷积(Dynamic Stride Convolution,DSC)方... 基于卷积神经网络的图像处理方法将卷积步长设置为与输入图像无关的固定值,输入图像的重要区域和不重要区域分配的卷积资源相等,从而导致资源分配不合理和网络冗余.针对该问题,本文提出动态步长卷积(Dynamic Stride Convolution,DSC)方法,通过学习一组与输入数据相关的偏移量来修改卷积核卷积步长,将更多的计算自适应分配给感兴趣区域.此外,本文利用学习到的偏移量来可视化卷积分布,提出层间可解释分析方法,以极低的计算消耗生成直观的可解释图,有助于研究人员分析卷积层之间的注意力分布.为了进一步优化卷积资源分配,本文设计新的损失函数来有效提高DSC的性能并实现对资源位置的编辑,并结合层间可解释分析方法将资源编辑可视化.本文将DSC嵌入到目标检测和图像分割等不同任务中,实验结果表明,在COCO数据集上不同网络的mAP(mean Average-Precision)增加了2%以上,证明了DSC方法的有效性. 展开更多
关键词 计算机视觉 卷积 动态步长卷积 层间可解释分析
下载PDF
基于改进图时间卷积网络的农村地区电动汽车充电负荷预测及其对农网的影响
12
作者 王子龙 黄莉 《电力需求侧管理》 2024年第5期88-93,共6页
在新能源汽车下乡政策的有力引导下,电动汽车在农村地区的销量快速增长,然而农村电网地域分布广、供电线路长,充电负荷相对分散且难以预测。为此,提出了基于改进图时间卷积网络的农村地区电动汽车充电负荷预测模型。首先,基于图卷积网... 在新能源汽车下乡政策的有力引导下,电动汽车在农村地区的销量快速增长,然而农村电网地域分布广、供电线路长,充电负荷相对分散且难以预测。为此,提出了基于改进图时间卷积网络的农村地区电动汽车充电负荷预测模型。首先,基于图卷积网络构建农村电网图结构矩阵,以表征用户充电特征的空间信息并降低输入数据的维度。其次,引入时间卷积网络感知充电数据的时序信息,挖掘影响负荷预测的时序特征。然后,提出基于注意力机制的改进图时间卷积网络算法进行充电需求预测,对不同特征进行权重分配,提升模型对时空信息的融合学习能力。最后,基于算例结果验证所提方法在农村地区电动汽车充电负荷预测上的有效性,并进一步分析了不同电动汽车渗透率下充电负荷对农村电网的影响。 展开更多
关键词 农村电网 电动汽车 充电负荷预测 卷积网络 时间卷积网络
下载PDF
基于动态图卷积神经网络的运动想象脑电信号研究
13
作者 周正康 袁之正 +2 位作者 颜亨 李玉 李舒然 《计算机科学与应用》 2024年第4期268-275,共8页
运动想象是一种认知神经科学领域的概念,指的是在不实际运动的情况下,通过想象运动来激活大脑相应区域的神经元。传统的CNN在处理EEG信号时存在劣势,因为EEG信号是一种时间序列数据,而CNN并不擅长处理这种类型的数据,导致无法充分挖掘... 运动想象是一种认知神经科学领域的概念,指的是在不实际运动的情况下,通过想象运动来激活大脑相应区域的神经元。传统的CNN在处理EEG信号时存在劣势,因为EEG信号是一种时间序列数据,而CNN并不擅长处理这种类型的数据,导致无法充分挖掘时间相关性和特征信息,影响了模型的性能和准确性。为了解决这一问题,本文使用动态图卷积和时间卷积来处理EEG数据,该方法能够有效地捕捉信号之间的时间依赖关系和动态变化,从而提高了模型在处理EEG信号时的性能和准确性。动态图卷积的优势在于能够更好地适应时间序列数据的特点,提高了模型在提取特征和预测方面的效果,有效解决了传统CNN在处理EEG信号时的劣势,为脑机接口技术等领域的发展带来了新的可能性。该方法主要过程如下:首先,EEG信号被输入到卷积滤波器进行处理,过滤成八个子频带后,分别输入到八个动态图卷积神经网络(DGCNN)中。最后,这些网络被串联起来,输入到一个时域卷积网络(TCN)中进行特征提取。在公开数据集上,DGCNN模型的平均分类准确率(82.5 ± 4.3%)优于传统的CNN模型(68.9 ± 3.6%)。 展开更多
关键词 运动想象 动态图卷积神经网络 时间卷积网络 脑机接口
下载PDF
集图卷积和三维方向卷积的点云分类分割模型 被引量:7
14
作者 兰红 陈浩 张蒲芬 《计算机工程与应用》 CSCD 北大核心 2023年第8期182-191,共10页
现有的深度学习方法在提取点云的局部特征时往往忽略了节点间的位置关系和方向信息,导致不能有效地学习点云的局部特征。为解决这一问题,提出一种集图卷积和三维方向卷积的点云分类分割模型GCN3D。GCN3D模型将图卷积神经网络应用在点云... 现有的深度学习方法在提取点云的局部特征时往往忽略了节点间的位置关系和方向信息,导致不能有效地学习点云的局部特征。为解决这一问题,提出一种集图卷积和三维方向卷积的点云分类分割模型GCN3D。GCN3D模型将图卷积神经网络应用在点云分类分割领域。将点云视作图上的节点,对每个节点求其K近邻,建立局部K近邻邻域内两两节点之间的边,并通过图卷积神经网络参数化边特征以捕捉节点间局部位置关系并更新中心节点特征;使用方向编码模块将节点的邻域划分为八个方位的细粒度的邻域小块,并按照三维空间坐标轴的方向依次将局部邻域结构内的节点特征映射到不同细粒度邻域空间内以提取节点间的方向信息,并且叠加两个方向编码模块增大网络的感受野,提高模型对于稀疏点云数据的鲁棒性并获取局部邻域多尺度特征。在ModelNet40数据集和ShapeNet数据集上分别进行点云分类和点云部分分割的实验。结果表明,相比没有考虑局部特征信息的PointNet,GCN3D模型在ModelNet40数据集上的总体分类精度提高了3.8个百分点,平均分类精度提高了4.3个百分点;在ShapeNet数据集上的平均交并比提高了1.5个百分点。相比其他深度学习模型性能有不同程度的提高。 展开更多
关键词 点云 分类分割 卷积神经网络 三维方向卷积 细粒度邻域 多尺度
下载PDF
基于双流图卷积网络的人体行为识别算法 被引量:3
15
作者 王宪伦 王广宇 孙宇轩 《传感器与微系统》 CSCD 北大核心 2023年第7期140-143,147,共5页
针对传统的卷积网络对人体行为识别速度不高或识别精度偏低的问题,提出了基于图卷积网络(GCN)的人体行为识别算法。首先,介绍了时空图卷积网络(ST-GCN)算法,该算法将人体骨架信息归类于图信息,并在时域和空间域上对人体信息进行图卷积运... 针对传统的卷积网络对人体行为识别速度不高或识别精度偏低的问题,提出了基于图卷积网络(GCN)的人体行为识别算法。首先,介绍了时空图卷积网络(ST-GCN)算法,该算法将人体骨架信息归类于图信息,并在时域和空间域上对人体信息进行图卷积运算;其次,使用双流GCN进行模型的搭建,双流GCN是对ST-GCN的一种改进,为某些相距很远但某些动作中关系密切的点创建“不可能连接”,并提出骨骼的长度和方向对人体行为识别也起到重要作用的观点。实验结果表明:对于选取的4个行为的平均识别率达到了92.2%,因此,基于双流GCN算法的人体行为识别方法具有可行性。 展开更多
关键词 卷积网络 人体行为识别 时空图卷积网络 双流图卷积网络
下载PDF
基于时域图卷积神经网络的交通流预测模型 被引量:1
16
作者 曹阳 朱镕琦 +1 位作者 沈琴琴 施佺 《计算机工程与设计》 北大核心 2023年第12期3700-3706,共7页
针对当前大多数模型对交通流数据空间信息挖掘不充分、无法捕获长序列单元间的信息等问题,提出一种基于时域图卷积神经网络的交通流预测模型。通过阈值权重法重构邻接矩阵,将多层近邻机制嵌入图卷积网络进一步挖掘空间信息;引入时域卷... 针对当前大多数模型对交通流数据空间信息挖掘不充分、无法捕获长序列单元间的信息等问题,提出一种基于时域图卷积神经网络的交通流预测模型。通过阈值权重法重构邻接矩阵,将多层近邻机制嵌入图卷积网络进一步挖掘空间信息;引入时域卷积网络,借助膨胀因果卷积扩大感知野并结合残差网络提取时间信息;运用Dense网络输出结果。利用加州性能评估系统中两个数据集进行评估,其结果表明,该模型性能优于常用的基准模型以及最近提出的多时空图卷积网络模型。 展开更多
关键词 智能交通系统 交通流预测 深度学习 卷积网络 膨胀卷积 时域卷积网络 时空特征融合
下载PDF
融合变分模态分解的时空卷积短时车速预测 被引量:1
17
作者 张凯 卢海鹏 +2 位作者 韩莹 张龄允 丁昱杰 《系统仿真学报》 CAS CSCD 北大核心 2023年第8期1651-1660,共10页
精准的短时车速预测能够帮助城市缓解交通拥堵问题。针对卷积神经网络(CNN)不能处理非欧式几何数据的缺陷,考虑到图卷积神经网络(GCN)整合全局特征的优点,结合双向长短期记忆网络(BiLSTM)提取时间特征的能力,将GCN和BiLSTM相结合,充分... 精准的短时车速预测能够帮助城市缓解交通拥堵问题。针对卷积神经网络(CNN)不能处理非欧式几何数据的缺陷,考虑到图卷积神经网络(GCN)整合全局特征的优点,结合双向长短期记忆网络(BiLSTM)提取时间特征的能力,将GCN和BiLSTM相结合,充分挖掘路网信息的时空特性。为了减少噪声对数据的干扰,引入变分模态分解(variational modal decomposition,VMD)进行降噪处理,提出了基于VMD-GCN-BiLSTM(VGBLSTM)的短时车速预测模型。仿真结果表明:VGBLSTM模型预测精度显著提升,特别是对波峰和波谷时刻拟合效果得到明显改善,对交通规划具有一定的参考作用。 展开更多
关键词 短时车速预测 卷积神经网络 卷积神经网络 双向长短期记忆网络 变分模态分解
下载PDF
基于多尺度卷积自注意力的多维时间序列预测 被引量:1
18
作者 霍纬纲 侯振环 《计算机工程与设计》 北大核心 2023年第4期1250-1258,共9页
现有的多维时间序列(mutivariate time series, MTS)预测模型大多关注序列变量间的时空依赖关系,没有考虑MTS各变量上取值的典型变化趋势,即局部上下文模式(local context pattern, LCP)。为此设计一种基于因果卷积自注意力和图卷积网络... 现有的多维时间序列(mutivariate time series, MTS)预测模型大多关注序列变量间的时空依赖关系,没有考虑MTS各变量上取值的典型变化趋势,即局部上下文模式(local context pattern, LCP)。为此设计一种基于因果卷积自注意力和图卷积网络的MTS预测模型,通过多通道多尺度因果卷积提取MTS各变量的多尺度LCP特征,采用多头自注意力机制捕获多尺度LCP间的时序依赖关系,由图卷积网络提取多尺度LCP时序特征之间的空间依赖关系。在4个公开MTS数据集上的结果表明了该预测方法预测性能的优越性。 展开更多
关键词 多维时间序列 预测 局部上下文 多通道因果卷积 卷积网络 多头自注意力 多尺度卷积
下载PDF
基于时空卷积的机会网络拓扑预测
19
作者 舒坚 史佳伟 +1 位作者 刘琳岚 Manar Al-Kali 《通信学报》 EI CSCD 北大核心 2023年第3期145-156,共12页
机会网络拓扑的高动态性导致其拓扑预测极具挑战。现有拓扑预测方法主要关注网络长期时空依赖,忽视了短期时空特征。综合考虑机会网络长短期时空依赖关系,提出一种基于动态时间规整算法与时空卷积的机会网络拓扑预测方法(DTW-STC)。基... 机会网络拓扑的高动态性导致其拓扑预测极具挑战。现有拓扑预测方法主要关注网络长期时空依赖,忽视了短期时空特征。综合考虑机会网络长短期时空依赖关系,提出一种基于动态时间规整算法与时空卷积的机会网络拓扑预测方法(DTW-STC)。基于动态时间规整算法确定切片时长,将机会网络切分为快照,用快照的链路状态矩阵表征其拓扑信息;采用时序卷积神经网络获取短期时序特征,结合网络变化构建时空图表征短期时空关系,利用图卷积运算提取网络的短期时空特征,经过多次卷积的堆叠,得到网络长短期时空特征;基于自编码器结构实现向量空间切换,预测下一时刻网络拓扑。3个真实机会网络数据集ITC、MIT以及Asturias-er上的实验结果表明,DTW-STC方法的预测性能优于基线方法。 展开更多
关键词 机会网络 拓扑预测 时序卷积 卷积 时空图
下载PDF
卷积神经网络模型在中医辨证论治中的应用现状
20
作者 马宁 郝秀霞 +1 位作者 邢俊凤 谷慧茹 《中国数字医学》 2023年第4期37-42,共6页
卷积神经网络模型作为人工智能深度学习技术的代表,因其强大的非线性特征提取能力,在中医辨证论治领域的应用越来越广泛,成为推进中医智能化发展和阐释中医科学理论体系的有效手段。本研究梳理了中医辨证论治各环节与卷积神经网络相关... 卷积神经网络模型作为人工智能深度学习技术的代表,因其强大的非线性特征提取能力,在中医辨证论治领域的应用越来越广泛,成为推进中医智能化发展和阐释中医科学理论体系的有效手段。本研究梳理了中医辨证论治各环节与卷积神经网络相关的应用,从中医望诊、针灸腧穴、医案辨证、用药推荐4个方面进行了归纳和总结,并分析了相关技术用于中医辨证论治时存在的问题及发展趋势,可为推动中医与人工智能技术的交叉融合发展提供参考。 展开更多
关键词 卷积神经网络 深度学习 人工智能 卷积 中医辨证论治
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部