With different varieties of facility Hami melon(Cucumis melo var. sacchairinus) as test materials, the effects of meteorological conditions on the yield and quality of different varieties of facility Hami melon were a...With different varieties of facility Hami melon(Cucumis melo var. sacchairinus) as test materials, the effects of meteorological conditions on the yield and quality of different varieties of facility Hami melon were analyzed. The results showed that among the yield and quality traits of melon, the variation degree of average single melon weight was the highest, and the coefficient of variation was 33.05%. The variation degree of leaf area index was the lowest, and the coefficient of variation was 11.00%. Through the correlation analysis of meteorological factors with the yield and quality of facility Hami melon, it was found that the quality traits of facility Hami melon were significantly positively correlated with maximum temperature and sunshine duration, and significantly negatively correlated with precipitation. The yield traits were positively correlated with maximum temperature, sunshine duration and precipitation.展开更多
In the present research work, a non-edible oil source Cucumis melo var. agrestis (wild melon) was systematically identified and studied for biodiesel production and its characterization. The extracted oil was 29.1% ...In the present research work, a non-edible oil source Cucumis melo var. agrestis (wild melon) was systematically identified and studied for biodiesel production and its characterization. The extracted oil was 29.1% of total dry seed weight. The free fatty acid value of the oil was found to be 0.64%, and the single-step alkaline transesterification method was used for conversion of fatty acids into their respective methyl esters. The maximum conversion efficiency of fatty acids was obtained at 0.4 wt% NaOH (used as catalyst), 30% (methanol to oil, v/v) methanol amount, 60 ℃ reaction temperature, 600-rpm agitation rate and 60-min reaction time. Under these optimal conditions, the conversion efficiency of fatty acid was 92%. However, in the case of KOH as catalyst, the highest conversion (85%) of fatty acids was obtained at 40% methanol to oil ratio, 1.28 wt% KOH, 60 ℃ reaction temperature, 600-rpm agitation rate and 45 min of reaction time. Qualitatively, biodiesel was characterized through Fourier transform infrared spectroscopy (FFIR) and gas chromatography and mass spectroscopy (GC-MS). FTIR results demonstrated a strong peak at 1742 cm-1, showing carbonyl groups (C=O) of methyl esters. However, GC-MS results showed the presence of twelve methyl esters comprised of lauric acid, myristic acid, palmitic acid, non-decanoic acid, hexadecanoic acid, octadecadienoic acid and octadecynoic acid. The fuel properties were found to fall within the range recommended by the international biodiesel standard, i.e., American Society of Testing Materials (ASTM): flash point of 91℃, density of 0.873 kg/L, viscosity of 5.35 cSt, pour point of - 13 ℃, cloud point of -10 ℃, total acid number of 0.242 mg KOH/g and sulfur content of 0.0043 wt%. The present work concluded the potential of wild melon seed oil as excellent non-edible source of bioenergy.展开更多
Silicon deposition in leaf trichome of six horticultural Cucurbitaceae species, cucumber (Cucumis sativus), pumpkin (Cucurbita maxima), melon (Cucumis melo), watermelon (Citrullus lanatus), sponge gourd (Luffa cylindr...Silicon deposition in leaf trichome of six horticultural Cucurbitaceae species, cucumber (Cucumis sativus), pumpkin (Cucurbita maxima), melon (Cucumis melo), watermelon (Citrullus lanatus), sponge gourd (Luffa cylindrica) and bottle gourd (Lagenaria siceraria var. hispida) was observed by an X-ray microanalyzer coupled with an environmental scanning electron microscope. The elements that presented in the surface of three or four leaves of the individual species were detected and mapped by the X-ray microanalyzer. In leaves of cucumber, pumpkin, and melon, high accumulation of silicon was detected in cells surrounding the bases of the trichome hair and the hair itself deposited calcium. On the other hand, in sponge gourd and bottle gourd, high accumulation of silicon was detected only in the hair. In watermelon leaves, silicon deposited both in the hair and in cells surrounding the bases of the hair. Thus, horticultural Cucurbitaceae plants have interspecific variation in the pattern of silicon deposition in leaf trichomes.展开更多
基金Supported by Project of Shandong Institute of Modern Agriculture of Zhejiang University for Serving Local Economic Development (ZDNY-2020-FWLY2006)。
文摘With different varieties of facility Hami melon(Cucumis melo var. sacchairinus) as test materials, the effects of meteorological conditions on the yield and quality of different varieties of facility Hami melon were analyzed. The results showed that among the yield and quality traits of melon, the variation degree of average single melon weight was the highest, and the coefficient of variation was 33.05%. The variation degree of leaf area index was the lowest, and the coefficient of variation was 11.00%. Through the correlation analysis of meteorological factors with the yield and quality of facility Hami melon, it was found that the quality traits of facility Hami melon were significantly positively correlated with maximum temperature and sunshine duration, and significantly negatively correlated with precipitation. The yield traits were positively correlated with maximum temperature, sunshine duration and precipitation.
文摘In the present research work, a non-edible oil source Cucumis melo var. agrestis (wild melon) was systematically identified and studied for biodiesel production and its characterization. The extracted oil was 29.1% of total dry seed weight. The free fatty acid value of the oil was found to be 0.64%, and the single-step alkaline transesterification method was used for conversion of fatty acids into their respective methyl esters. The maximum conversion efficiency of fatty acids was obtained at 0.4 wt% NaOH (used as catalyst), 30% (methanol to oil, v/v) methanol amount, 60 ℃ reaction temperature, 600-rpm agitation rate and 60-min reaction time. Under these optimal conditions, the conversion efficiency of fatty acid was 92%. However, in the case of KOH as catalyst, the highest conversion (85%) of fatty acids was obtained at 40% methanol to oil ratio, 1.28 wt% KOH, 60 ℃ reaction temperature, 600-rpm agitation rate and 45 min of reaction time. Qualitatively, biodiesel was characterized through Fourier transform infrared spectroscopy (FFIR) and gas chromatography and mass spectroscopy (GC-MS). FTIR results demonstrated a strong peak at 1742 cm-1, showing carbonyl groups (C=O) of methyl esters. However, GC-MS results showed the presence of twelve methyl esters comprised of lauric acid, myristic acid, palmitic acid, non-decanoic acid, hexadecanoic acid, octadecadienoic acid and octadecynoic acid. The fuel properties were found to fall within the range recommended by the international biodiesel standard, i.e., American Society of Testing Materials (ASTM): flash point of 91℃, density of 0.873 kg/L, viscosity of 5.35 cSt, pour point of - 13 ℃, cloud point of -10 ℃, total acid number of 0.242 mg KOH/g and sulfur content of 0.0043 wt%. The present work concluded the potential of wild melon seed oil as excellent non-edible source of bioenergy.
文摘Silicon deposition in leaf trichome of six horticultural Cucurbitaceae species, cucumber (Cucumis sativus), pumpkin (Cucurbita maxima), melon (Cucumis melo), watermelon (Citrullus lanatus), sponge gourd (Luffa cylindrica) and bottle gourd (Lagenaria siceraria var. hispida) was observed by an X-ray microanalyzer coupled with an environmental scanning electron microscope. The elements that presented in the surface of three or four leaves of the individual species were detected and mapped by the X-ray microanalyzer. In leaves of cucumber, pumpkin, and melon, high accumulation of silicon was detected in cells surrounding the bases of the trichome hair and the hair itself deposited calcium. On the other hand, in sponge gourd and bottle gourd, high accumulation of silicon was detected only in the hair. In watermelon leaves, silicon deposited both in the hair and in cells surrounding the bases of the hair. Thus, horticultural Cucurbitaceae plants have interspecific variation in the pattern of silicon deposition in leaf trichomes.