Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-f...Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.展开更多
In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defi...In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defined, and a fractional Hamilton principle under this definition is established. The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle. A number of special cases are given, showing the universality of our conclusions. At the end of the paper, an example is given to illustrate the application of the results.展开更多
In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship betwe...In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.展开更多
Combining the symplectic variations theory, the homogeneous control equation and isopaxametric element homogeneous formulations for piezothermoelastic hybrid laminates problems were deduced. Firstly, based on the gene...Combining the symplectic variations theory, the homogeneous control equation and isopaxametric element homogeneous formulations for piezothermoelastic hybrid laminates problems were deduced. Firstly, based on the generalized Hamilton variation principle, the non-homogeneous Hamilton canonical equation for piezothermoelastic bodies was derived. Then the symplectic relationship of variations in the thermal equilibrium formulations and gradient equations was considered, and the non-homogeneous canonical equation was transformed to homogeneous control equation for solving independently the coupling problem of piezothermoelastic bodies by the incensement of dimensions of the canonical equation. For the convenience of deriving Hamilton isopaxametric element formulations with four nodes, one can consider the temperature gradient equation as constitutive relation and reconstruct new variation principle. The homogeneous equation simplifies greatly the solution programs which axe often performed to solve nonhomogeneous equation and second order differential equation on the thermal equilibrium and gradient relationship.展开更多
By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations an...By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations andthe boundary conditions for the static and elastoplastic analysis of composite plates are presented. With thetransformation of phase variables, the Hamilton canonical equations and their boundary conditions for thecylindrical shells and doubly curved shells in the curvilinear coordinate are given.展开更多
By giving up any assumptions about displacement models and stress distribution,the mixed state Hamilton equation for the axisymmetric problem of the thick laminated closed cantilever cylindrical shells is established....By giving up any assumptions about displacement models and stress distribution,the mixed state Hamilton equation for the axisymmetric problem of the thick laminated closed cantilever cylindrical shells is established.An identical analytical solution is obtained for the thin,moderately thick and thick laminated closed cantilever cylindrical shells.All equations of elasticity can be satis- fied,and all elastic constants can be taken into account.展开更多
Through introducing the Laplace transformation in the time direction, the mixed state Hamilton canonical equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite ...Through introducing the Laplace transformation in the time direction, the mixed state Hamilton canonical equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method accounts for the separation of variables, the finite element discretization can be employed in the plane of laminar, and the exact solution in the thickness direction is derived by the state space control method. To apply the transfer matrix method, the relational expression at the top and bottom surface is established. So the general solution in transformation space is deduced by the spot method. By the application of inversion of Laplace transformation, the transient displacements and stresses can be derived.展开更多
Path integral technique is discussed using Hamilton Jacobi method. The Hamilton Jacobi function of non-natural Lagrangian is obtained using separation of variables method. This function makes an important role in path...Path integral technique is discussed using Hamilton Jacobi method. The Hamilton Jacobi function of non-natural Lagrangian is obtained using separation of variables method. This function makes an important role in path integral quantization. The path integral is obtained as integration over the canonical phase space coordinates, which contains the generalized coordinate q and the generalized momentum p. One illustrative example is considered to explain the application of our formalism.展开更多
In this work time independent damping systems are studied using Lagrangian and Hamiltonian for time independent damping, which are present through the factor e<sup>λq</sup>. The Hamilton Jacobi equation i...In this work time independent damping systems are studied using Lagrangian and Hamiltonian for time independent damping, which are present through the factor e<sup>λq</sup>. The Hamilton Jacobi equation is formulated to find the Hamilton Jacobi function S using separation of variables technique. We can form this function in compact form of two parts the first part as a function of coordinate q, and the second part as a function of time t. Finally, we find the ability of these systems to quantize through an illustrative example.展开更多
The constrained motion of a particle on an elliptical path is studied using Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics through Euler Lagrange equation using non-natural Lagrangian. We calcu...The constrained motion of a particle on an elliptical path is studied using Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics through Euler Lagrange equation using non-natural Lagrangian. We calculate the generalized momentum p<sub>θ</sub> and we find that this quantity is not conserved and the conjugate θ coordinate is not a cyclic coordinate.展开更多
In this paper, with the application of the Delauney variables, according to the Hamilton equations, the influence on the perturbation of a satellite exerted by the gravitational force of the earth through canonical tr...In this paper, with the application of the Delauney variables, according to the Hamilton equations, the influence on the perturbation of a satellite exerted by the gravitational force of the earth through canonical transformation has been found out. As a result, the equation about how the position and velocity of the satellite vary with time is deduced.展开更多
In the present paper, three kinds of forms for Noether’s conservation laws of hol-onomic nonconservative dynamical systems in generalized mechanics are given.
From the mixed variational principle, by the selection of the state variables and its dual variables, the Hamiltonian canonical equation for the dynamic analysis of shear deformable antisymmetric angle-ply laminated p...From the mixed variational principle, by the selection of the state variables and its dual variables, the Hamiltonian canonical equation for the dynamic analysis of shear deformable antisymmetric angle-ply laminated plates is derived, leading to the mathematical frame of symplectic geometry and algorithms, and the exact solution for the arbitrary boundary conditions is also derived by the adjoint orthonormalized symplectic expansion method. Numerical results are presented with the emphasis on the effects of length/thickness ratio, arbitrary boundary conditions, degrees of anisotropy, number of layers, ply-angles and the corrected coefficients of transverse shear.展开更多
This paper presents the analytic solution for Reissner plate bending derived by the symplectic geometry approach.Firstly,the basic equations for Reissner plate are transferred into Hamilton canonical equations.And the...This paper presents the analytic solution for Reissner plate bending derived by the symplectic geometry approach.Firstly,the basic equations for Reissner plate are transferred into Hamilton canonical equations.And then the whole state variables are separated.Finally,the solution is obtained according to the method of eigenfunction expansion in the symplectic geometry.Only the basic elasticity equations of Reissner plate are used in the present study and the pre-selection of the deformation function is abandoned,which is requisite in classical solution methods.Therefore,the utilized approach is completely reasonable and theoretical.To verify the accuracy and validity of the formulations derived,the numerical results are presented to compare with those available in the open literatures.展开更多
Singular system has great relationship with gauge field theory,condensed matter theory and some other research areas.Based on the mixed integer and Riemann-Liouville fractional derivatives,the fractional singular syst...Singular system has great relationship with gauge field theory,condensed matter theory and some other research areas.Based on the mixed integer and Riemann-Liouville fractional derivatives,the fractional singular system is studied.Firstly,the fractional constrained Hamilton equation and the fractional inherent constraint are presented.Secondly,Lie symmetry and conserved quantity are analyzed,including determined equation,limited equation,additional limited equation and structural equation.And finally,an example is given to illustrate the methods and results.展开更多
Noether theorems for two fractional singular systems are discussed.One system involves mixed integer and Caputo fractional derivatives,and the other involves only Caputo fractional derivatives.Firstly,the fractional p...Noether theorems for two fractional singular systems are discussed.One system involves mixed integer and Caputo fractional derivatives,and the other involves only Caputo fractional derivatives.Firstly,the fractional primary constraints and the fractional constrained Hamilton equations are given.Then,the fractional Noether theorems of the two fractional singular systems are established,including the fractional Noether identities,the fractional Noether quasi-identities and the fractional conserved quantities.Finally,the results obtained are illustrated by two examples.展开更多
The effective one-body theories, introduced by Buonanno and Damour, are novel approaches to constructing a gravitational waveform template. By taking a gauge in which ψ_(1)^(B) and ψ_(3)^(B) vanish, we find a decoup...The effective one-body theories, introduced by Buonanno and Damour, are novel approaches to constructing a gravitational waveform template. By taking a gauge in which ψ_(1)^(B) and ψ_(3)^(B) vanish, we find a decoupled equation with separable variables for ψ_(4)^(B) in the effective metric obtained in the post-Minkowskian approximation. Furthermore, we set up a new self-consistent effective one-body theory for spinless binaries, which can be applicable to any post-Minkowskian orders. This theory not only releases the assumption that v/c should be a small quantity but also resolves the contradiction that the Hamiltonian, radiation-reaction force, and waveform are constructed from different physical models in the effective one-body theory with the post-Newtonian approximation. Compared with our previous theory [Sci. China-Phys. Mech. Astron. 65, 260411(2022)], the computational effort for the radiation-reaction force and waveform in this new theory will be tremendously reduced.展开更多
In this paper, we consider the relativistic Harnilton-Jacobi (HJ) equation and study Hawking radiation (HR) of scalar particles from uncharged Grumiller black hole (GBH) which is affordable for testing in astrop...In this paper, we consider the relativistic Harnilton-Jacobi (HJ) equation and study Hawking radiation (HR) of scalar particles from uncharged Grumiller black hole (GBH) which is affordable for testing in astrophysics. It is a/so known as Rindler modified Schwarzschild BH. Our aim is not only to investigate the effect of the Rindler parameter a on the Hawking temperature (TH ), but to examine whether there is any discrepancy between the computed horizon temperature and the standard TH as well. For this purpose, in addition to its naive coordinate system, we study on the three regular coordinate systems, which are Painlevd--Gullstrand (PG), ingoing Edding^on-Finkelstein (IEF), and Kruskal-Szekeres (KS) coordinates. In o21 coordinate systems, we calculate the tunneling probabilities of incoming and outgoing scalar particles from the event horizon by using the HJ equation. It has been shown in detail that the considered HJ method is concluded with the conventional T~ in all these coordinate systems without giving rise to the famous factor-2 problem. Filrthermore, in the PG coordinates Parikh-Wilczek's tunneling (PWT) method is employed in order to show how one can integrate the quantum gravity (QG) corrections to the semiclassical tunneling rate by including the effects of self-gravitation and back reaction. We then show how this yields a modification in the TH.展开更多
In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsuran...In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsurance to transfer part of the insurance claims risk.In addition to reinsurance,she also can invests her surplus in a financial market,which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility(SV)model.Considering the performance-related capital flow,the insurer’s wealth process is modeled by a stochastic differential delay equation.The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth.We explicitly derive the optimal strategy and the value function.Finally,we provide some numerical examples to illustrate our results.展开更多
文摘Missile interception problem can be regarded as a two-person zero-sum differential games problem,which depends on the solution of Hamilton-Jacobi-Isaacs(HJI)equa-tion.It has been proved impossible to obtain a closed-form solu-tion due to the nonlinearity of HJI equation,and many iterative algorithms are proposed to solve the HJI equation.Simultane-ous policy updating algorithm(SPUA)is an effective algorithm for solving HJI equation,but it is an on-policy integral reinforce-ment learning(IRL).For online implementation of SPUA,the dis-turbance signals need to be adjustable,which is unrealistic.In this paper,an off-policy IRL algorithm based on SPUA is pro-posed without making use of any knowledge of the systems dynamics.Then,a neural-network based online adaptive critic implementation scheme of the off-policy IRL algorithm is pre-sented.Based on the online off-policy IRL method,a computa-tional intelligence interception guidance(CIIG)law is developed for intercepting high-maneuvering target.As a model-free method,intercepting targets can be achieved through measur-ing system data online.The effectiveness of the CIIG is verified through two missile and target engagement scenarios.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defined, and a fractional Hamilton principle under this definition is established. The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle. A number of special cases are given, showing the universality of our conclusions. At the end of the paper, an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13097)the Key Science and Technology Innovation Team Project of Zhejiang Province,China(Grant No.2013TD18)
文摘In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.
基金Project supported by the National Natural Science Foundation of China(No.50276041)
文摘Combining the symplectic variations theory, the homogeneous control equation and isopaxametric element homogeneous formulations for piezothermoelastic hybrid laminates problems were deduced. Firstly, based on the generalized Hamilton variation principle, the non-homogeneous Hamilton canonical equation for piezothermoelastic bodies was derived. Then the symplectic relationship of variations in the thermal equilibrium formulations and gradient equations was considered, and the non-homogeneous canonical equation was transformed to homogeneous control equation for solving independently the coupling problem of piezothermoelastic bodies by the incensement of dimensions of the canonical equation. For the convenience of deriving Hamilton isopaxametric element formulations with four nodes, one can consider the temperature gradient equation as constitutive relation and reconstruct new variation principle. The homogeneous equation simplifies greatly the solution programs which axe often performed to solve nonhomogeneous equation and second order differential equation on the thermal equilibrium and gradient relationship.
文摘By introducing the Hamilton theory and algorithms into the problems of laminated composite plates andshells, the Hamiltion type generalized variational principle is established, and the Hamilton canonical equations andthe boundary conditions for the static and elastoplastic analysis of composite plates are presented. With thetransformation of phase variables, the Hamilton canonical equations and their boundary conditions for thecylindrical shells and doubly curved shells in the curvilinear coordinate are given.
基金the National Natural Science Foundation of China
文摘By giving up any assumptions about displacement models and stress distribution,the mixed state Hamilton equation for the axisymmetric problem of the thick laminated closed cantilever cylindrical shells is established.An identical analytical solution is obtained for the thin,moderately thick and thick laminated closed cantilever cylindrical shells.All equations of elasticity can be satis- fied,and all elastic constants can be taken into account.
文摘Through introducing the Laplace transformation in the time direction, the mixed state Hamilton canonical equation and a semi-analytical solution are presented for analyzing the dynamic response of laminated composite plates. This method accounts for the separation of variables, the finite element discretization can be employed in the plane of laminar, and the exact solution in the thickness direction is derived by the state space control method. To apply the transfer matrix method, the relational expression at the top and bottom surface is established. So the general solution in transformation space is deduced by the spot method. By the application of inversion of Laplace transformation, the transient displacements and stresses can be derived.
文摘Path integral technique is discussed using Hamilton Jacobi method. The Hamilton Jacobi function of non-natural Lagrangian is obtained using separation of variables method. This function makes an important role in path integral quantization. The path integral is obtained as integration over the canonical phase space coordinates, which contains the generalized coordinate q and the generalized momentum p. One illustrative example is considered to explain the application of our formalism.
文摘In this work time independent damping systems are studied using Lagrangian and Hamiltonian for time independent damping, which are present through the factor e<sup>λq</sup>. The Hamilton Jacobi equation is formulated to find the Hamilton Jacobi function S using separation of variables technique. We can form this function in compact form of two parts the first part as a function of coordinate q, and the second part as a function of time t. Finally, we find the ability of these systems to quantize through an illustrative example.
文摘The constrained motion of a particle on an elliptical path is studied using Hamiltonian mechanics through Poisson bracket and Lagrangian mechanics through Euler Lagrange equation using non-natural Lagrangian. We calculate the generalized momentum p<sub>θ</sub> and we find that this quantity is not conserved and the conjugate θ coordinate is not a cyclic coordinate.
文摘In this paper, with the application of the Delauney variables, according to the Hamilton equations, the influence on the perturbation of a satellite exerted by the gravitational force of the earth through canonical transformation has been found out. As a result, the equation about how the position and velocity of the satellite vary with time is deduced.
文摘In the present paper, three kinds of forms for Noether’s conservation laws of hol-onomic nonconservative dynamical systems in generalized mechanics are given.
文摘From the mixed variational principle, by the selection of the state variables and its dual variables, the Hamiltonian canonical equation for the dynamic analysis of shear deformable antisymmetric angle-ply laminated plates is derived, leading to the mathematical frame of symplectic geometry and algorithms, and the exact solution for the arbitrary boundary conditions is also derived by the adjoint orthonormalized symplectic expansion method. Numerical results are presented with the emphasis on the effects of length/thickness ratio, arbitrary boundary conditions, degrees of anisotropy, number of layers, ply-angles and the corrected coefficients of transverse shear.
文摘This paper presents the analytic solution for Reissner plate bending derived by the symplectic geometry approach.Firstly,the basic equations for Reissner plate are transferred into Hamilton canonical equations.And then the whole state variables are separated.Finally,the solution is obtained according to the method of eigenfunction expansion in the symplectic geometry.Only the basic elasticity equations of Reissner plate are used in the present study and the pre-selection of the deformation function is abandoned,which is requisite in classical solution methods.Therefore,the utilized approach is completely reasonable and theoretical.To verify the accuracy and validity of the formulations derived,the numerical results are presented to compare with those available in the open literatures.
基金the National Natural Science Foundation of China(12172241,11802193,11972241)the Natural Science Foundation of Jiangsu Province(BK20191454)the"Qinglan Project"of Jiangsu Province。
文摘Singular system has great relationship with gauge field theory,condensed matter theory and some other research areas.Based on the mixed integer and Riemann-Liouville fractional derivatives,the fractional singular system is studied.Firstly,the fractional constrained Hamilton equation and the fractional inherent constraint are presented.Secondly,Lie symmetry and conserved quantity are analyzed,including determined equation,limited equation,additional limited equation and structural equation.And finally,an example is given to illustrate the methods and results.
基金Supported by the National Natural Science Foundation of China(12172241,12002228,12272248,11972241)Qing Lan Project of Colleges and Universities in Jiangsu Province
文摘Noether theorems for two fractional singular systems are discussed.One system involves mixed integer and Caputo fractional derivatives,and the other involves only Caputo fractional derivatives.Firstly,the fractional primary constraints and the fractional constrained Hamilton equations are given.Then,the fractional Noether theorems of the two fractional singular systems are established,including the fractional Noether identities,the fractional Noether quasi-identities and the fractional conserved quantities.Finally,the results obtained are illustrated by two examples.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12035005, 12122504, and 11875025)National Key Research and Development Program of China (Grant No.2020YFC2201400)。
文摘The effective one-body theories, introduced by Buonanno and Damour, are novel approaches to constructing a gravitational waveform template. By taking a gauge in which ψ_(1)^(B) and ψ_(3)^(B) vanish, we find a decoupled equation with separable variables for ψ_(4)^(B) in the effective metric obtained in the post-Minkowskian approximation. Furthermore, we set up a new self-consistent effective one-body theory for spinless binaries, which can be applicable to any post-Minkowskian orders. This theory not only releases the assumption that v/c should be a small quantity but also resolves the contradiction that the Hamiltonian, radiation-reaction force, and waveform are constructed from different physical models in the effective one-body theory with the post-Newtonian approximation. Compared with our previous theory [Sci. China-Phys. Mech. Astron. 65, 260411(2022)], the computational effort for the radiation-reaction force and waveform in this new theory will be tremendously reduced.
文摘In this paper, we consider the relativistic Harnilton-Jacobi (HJ) equation and study Hawking radiation (HR) of scalar particles from uncharged Grumiller black hole (GBH) which is affordable for testing in astrophysics. It is a/so known as Rindler modified Schwarzschild BH. Our aim is not only to investigate the effect of the Rindler parameter a on the Hawking temperature (TH ), but to examine whether there is any discrepancy between the computed horizon temperature and the standard TH as well. For this purpose, in addition to its naive coordinate system, we study on the three regular coordinate systems, which are Painlevd--Gullstrand (PG), ingoing Edding^on-Finkelstein (IEF), and Kruskal-Szekeres (KS) coordinates. In o21 coordinate systems, we calculate the tunneling probabilities of incoming and outgoing scalar particles from the event horizon by using the HJ equation. It has been shown in detail that the considered HJ method is concluded with the conventional T~ in all these coordinate systems without giving rise to the famous factor-2 problem. Filrthermore, in the PG coordinates Parikh-Wilczek's tunneling (PWT) method is employed in order to show how one can integrate the quantum gravity (QG) corrections to the semiclassical tunneling rate by including the effects of self-gravitation and back reaction. We then show how this yields a modification in the TH.
基金This research was supported by the National Natural Science Foundation of China(No.71801186)the Science Foundation of Ministry of Education of China(No.18YJC630001)the Natural Science Foundation of Guangdong Province of China(No.2017A030310660).
文摘In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsurance to transfer part of the insurance claims risk.In addition to reinsurance,she also can invests her surplus in a financial market,which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility(SV)model.Considering the performance-related capital flow,the insurer’s wealth process is modeled by a stochastic differential delay equation.The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth.We explicitly derive the optimal strategy and the value function.Finally,we provide some numerical examples to illustrate our results.