In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the ...In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the constrained Hamilton variational principle, a shallow water equation based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method combining the finite element method for spa- tial discretization and the Zu-class method for time integration is created for the SWE- DP. The correctness of the proposed SWE-DP is verified by numerical comparisons with two existing shallow water equations (SWEs). The effectiveness of the hybrid numerical method proposed for the SWE-DP is also verified by numerical experiments. Moreover, the numerical experiments demonstrate that the Zu-class method shows excellent perfor- mance with respect to simulating the long time evolution of the shallow water.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dyn...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dynamics of Reissner sandwich plate can be established systematically. The unconventional Hamilton-type variation principle can fully characterize the initial boundary value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work in dynamics of Reissner sandwich plate, but also to derive systematically the complementary functionals for fivefield, two-field and one-field unconventional Hamilton-type variational principles by the generalized Legender transformations. Furthermore, with this approach, the intrinsic relationship among the various principles can be explained clearly.展开更多
According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrica...According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures are established systematically, which can fully characterize the initial-boundary-value problem of this kind of dynamics. An ifnportant integral relation is made, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on such relationship, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given in this paper, Furthermore, the intrinsic relationship among various principles can be explained clearly with this approach.展开更多
A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hy...A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.展开更多
According to the Herglotz variational principle and differential variational principle of Herglotz type, we study the adiabatic invariants for a non-conservative nonholonomic system. Firstly, the differential equation...According to the Herglotz variational principle and differential variational principle of Herglotz type, we study the adiabatic invariants for a non-conservative nonholonomic system. Firstly, the differential equations of motion of the non-conservative nonholonomic system based upon the generalized variational principle of Herglotz type are given, and the exact invariant for the non-conservative nonholonomic system is introduced. Secondly, a new type of adiabatic invariant for the system under the action of a small perturbation is obtained. Thirdly, the inverse theorem of the adiabatic invariant is given. Finally, an example is given.展开更多
Using the method of [1], the present paper derives the Lagrange equation without multipliers for another class of first-order nonholonomic dynamical systems by means of variational principle. This kind of equations is...Using the method of [1], the present paper derives the Lagrange equation without multipliers for another class of first-order nonholonomic dynamical systems by means of variational principle. This kind of equations is also new.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the un-conventional Hamilton-type variational principles of holonomic...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the un-conventional Hamilton-type variational principles of holonomic conservative system in analytical mechanics can be established systematically. This unconventional Hamilton-type variational principle can fully characterize the initial-value problem of analytical mechanics, so that it is an important innovation for the Hamilton-type variational principle. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for analytical mechanics in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work of holonomic conservative system in analytical mechanics, but also to derive systematically the complementary functionals for three-field and two-field unconventional variational principles, and the functional for the one-field one by the generalized Legendre transformation given in this paper. Further, with this new approach, the intrinsic relationship among various principles can be explained clearly. Meanwhile, the unconventional Hamilton-type variational principles of nonholonomic conservative system in analytical mechanics can also be established systematically in this paper.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electroma...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometric...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear coupled thermoelastodynamics can be established systematically. The new unconventional Hamilton-type variational principle can fully characterize the initial-boundaty-value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for geometrically nonlinear coupled thermodynamics. Based on this relation, it is possible not only to obtain the principle of virtual work in geometrically nonlinear coupled thermodynamics, but also to derive systematically the complementary functionals for eight-field, six-field, four-field and two-field unconventional Hamilton-type variational principles by the generalized Legendre transformations given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.展开更多
By a novel approach proposed by Luo, the unconventional Hamilton-type variational principle in phase space for elastodynamics of multidegree-of-freedom system is established in this paper. It not only can fully charac...By a novel approach proposed by Luo, the unconventional Hamilton-type variational principle in phase space for elastodynamics of multidegree-of-freedom system is established in this paper. It not only can fully characterize the initial-value problem of this dynamic, but also has a natural symplectic structure. Based on this variational principle, a symplectic algorithm which is called a symplectic time-subdomain method is proposed. A non-difference scheme is constructed by applying Lagrange interpolation polynomial to the time subdomain. Furthermore, it is also proved that the presented symplectic algorithm is an unconditionally stable one. From the results of the two numerical examples of different types, it can be seen that the accuracy and the computational efficiency of the new method excel obviously those of widely used Wilson-? and Newmark-? methods. Therefore, this new algorithm is a highly efficient one with better computational performance.展开更多
This paper presents the generalized principles of least action of variable mass nonholonomic nonconservative system in noninertial reference frame, proves the equivalence between Holder form and Suslov form, and then ...This paper presents the generalized principles of least action of variable mass nonholonomic nonconservative system in noninertial reference frame, proves the equivalence between Holder form and Suslov form, and then obtains differential equations of motion of variable mass nonholonomic nonconservative system in noninertial reference frame.展开更多
By using the involutory transformations, the classical variational principle——Hamiltonian principle of two kinds of variables in general mechanics is advanced and by using undetermined Lagrangian multiplier method, ...By using the involutory transformations, the classical variational principle——Hamiltonian principle of two kinds of variables in general mechanics is advanced and by using undetermined Lagrangian multiplier method, the generalized variational principles and generalized variational principles with subsidiary conditions are established. The stationary conditions of various kinds of variational principles are derived and the relational problems discussed.展开更多
In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equa...In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.展开更多
With classical variable mass and relativistic variable mass cases being considered.the relativistic D' Alembert principles of Lagrange form Nielsen form and Appell. form for variable mass controllable mechanical s...With classical variable mass and relativistic variable mass cases being considered.the relativistic D' Alembert principles of Lagrange form Nielsen form and Appell. form for variable mass controllable mechanical system are given the relativistic Chaplygin equation. Nielsen equation and Appell equation .for variable mass controllable mechanical system in quasi-coordinates and generalized- coordinates are obtained, and the equations of motion of relativistic controllable mechanical system for holonomic system and constant mass system are diseussed展开更多
By the generalized variational principle of two kinds of variables in general me-chanics,it was demonstrated that two Lagrangian classical relationships can be applied to both holonomic systems and nonholonomic system...By the generalized variational principle of two kinds of variables in general me-chanics,it was demonstrated that two Lagrangian classical relationships can be applied to both holonomic systems and nonholonomic systems. And the restriction that two Lagrangian classical relationships cannot be applied to nonholonomic systems for a long time was overcome. Then,one important formula of similar La-grangian classical relationship called the popularized Lagrangian classical rela-tionship was derived. From Vakonomic model,by two Lagrangian classical rela-tionships and the popularized Lagrangian classical relationship,the result is the same with Chetaev's model,and thus Chetaev's model and Vakonomic model were unified. Simultaneously,the Lagrangian theoretical framework of dynamics of nonholonomic system was established. By some representative examples,it was validated that the Lagrangian theoretical framework of dynamics of nonholonomic systems is right.展开更多
This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for appli...This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.展开更多
In this paper, the Gibbs-Appell's equations of motion are extended to the most general variable mass nonholonomie mechanical systems. Then the Gibbs-Appell's equations of motion in terms of generalized coordin...In this paper, the Gibbs-Appell's equations of motion are extended to the most general variable mass nonholonomie mechanical systems. Then the Gibbs-Appell's equations of motion in terms of generalized coordinates or quasi-coordinates and an integral variational principle of variable mass nonlinear nonholonomie mechanical systems are obtained. Finally, an example is given.展开更多
The new variational principle of Gauss's form of nonlinear nonholonomic nonpotential system relative to non-inertial reference frame is established by constructing generalized inertial potentials. Naether's th...The new variational principle of Gauss's form of nonlinear nonholonomic nonpotential system relative to non-inertial reference frame is established by constructing generalized inertial potentials. Naether's theorem and Naether's inverse theorem of the system above is presented and proved. Finally, one example is given to illustrate the application.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11472067)
文摘In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the constrained Hamilton variational principle, a shallow water equation based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method combining the finite element method for spa- tial discretization and the Zu-class method for time integration is created for the SWE- DP. The correctness of the proposed SWE-DP is verified by numerical comparisons with two existing shallow water equations (SWEs). The effectiveness of the hybrid numerical method proposed for the SWE-DP is also verified by numerical experiments. Moreover, the numerical experiments demonstrate that the Zu-class method shows excellent perfor- mance with respect to simulating the long time evolution of the shallow water.
基金Project supported by the National Natural Science Foundation of China(No.10172097)the Doctoral Foundation of Ministry of Education of China(No.20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dynamics of Reissner sandwich plate can be established systematically. The unconventional Hamilton-type variation principle can fully characterize the initial boundary value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work in dynamics of Reissner sandwich plate, but also to derive systematically the complementary functionals for fivefield, two-field and one-field unconventional Hamilton-type variational principles by the generalized Legender transformations. Furthermore, with this approach, the intrinsic relationship among the various principles can be explained clearly.
基金Project supported by the National Natural Science Foundation of China(No.10172097)the Doctoral Foundation of Ministry of Education of China(No.20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures are established systematically, which can fully characterize the initial-boundary-value problem of this kind of dynamics. An ifnportant integral relation is made, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on such relationship, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given in this paper, Furthermore, the intrinsic relationship among various principles can be explained clearly with this approach.
基金supported by the National Natural Science Foundation of China (10872108,10876100)the Program for New Century Excellent Talents in University (NCET-07-0477)the National Basic Research Program of China (2010CB832701)
文摘A novel hybrid-stress finite element method is proposed for constructing simple 4-node quadrilateral plane elements, and the new element is denoted as HH4-3fl here. Firstly, the theoretical basis of the traditional hybrid-stress elements, i.e., the Hellinger-Reissner variational principle, is replaced by the Hamilton variational principle, in which the number of the stress variables is reduced from 3 to 2. Secondly, three stress parameters and corresponding trial functions are introduced into the system equations. Thirdly, the displacement fields of the conventional bilinear isoparametric element are employed in the new models. Finally, from the stationary condition, the stress parameters can be expressed in terms of the displacement parameters, and thus the new element stiffness matrices can be obtained. Since the required number of stress variables in the Hamilton variational principle is less than that in the Hellinger-Reissner variational principle, and no additional incompatible displacement modes are considered, the new hybrid-stress element is simpler than the traditional ones. Furthermore, in order to improve the accuracy of the stress solutions, two enhanced post-processing schemes are also proposed for element HH4-3β. Numerical examples show that the proposed model exhibits great improvements in both displacement and stress solutions, implying that the proposed technique is an effective way for developing simple finite element models with high performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572212,11272227,and 10972151)the Innovation Program for Postgraduade in Higher Education Institutions of Jiangsu Province,China(Grant No.KYCX18_2548)
文摘According to the Herglotz variational principle and differential variational principle of Herglotz type, we study the adiabatic invariants for a non-conservative nonholonomic system. Firstly, the differential equations of motion of the non-conservative nonholonomic system based upon the generalized variational principle of Herglotz type are given, and the exact invariant for the non-conservative nonholonomic system is introduced. Secondly, a new type of adiabatic invariant for the system under the action of a small perturbation is obtained. Thirdly, the inverse theorem of the adiabatic invariant is given. Finally, an example is given.
文摘Using the method of [1], the present paper derives the Lagrange equation without multipliers for another class of first-order nonholonomic dynamical systems by means of variational principle. This kind of equations is also new.
基金the National Natural Science Foundation of China(Grant Nos. 10172097 & 10272034)the Science Foundation for Doctoral Program of Ministry of Education of China (Grant No. 20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the un-conventional Hamilton-type variational principles of holonomic conservative system in analytical mechanics can be established systematically. This unconventional Hamilton-type variational principle can fully characterize the initial-value problem of analytical mechanics, so that it is an important innovation for the Hamilton-type variational principle. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for analytical mechanics in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work of holonomic conservative system in analytical mechanics, but also to derive systematically the complementary functionals for three-field and two-field unconventional variational principles, and the functional for the one-field one by the generalized Legendre transformation given in this paper. Further, with this new approach, the intrinsic relationship among various principles can be explained clearly. Meanwhile, the unconventional Hamilton-type variational principles of nonholonomic conservative system in analytical mechanics can also be established systematically in this paper.
基金the National Natural Science Foundation of China ( Grant No. 10172097) the Scientific Foundation of the Ministry of Education of China for Doctoral Program ( Grant No. 20030558025).
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 10172097, 19672074 & 19902022) Research Grand Council of Hong Kong. No. RGC 97/98, HKUST6055/97E.
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear coupled thermoelastodynamics can be established systematically. The new unconventional Hamilton-type variational principle can fully characterize the initial-boundaty-value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for geometrically nonlinear coupled thermodynamics. Based on this relation, it is possible not only to obtain the principle of virtual work in geometrically nonlinear coupled thermodynamics, but also to derive systematically the complementary functionals for eight-field, six-field, four-field and two-field unconventional Hamilton-type variational principles by the generalized Legendre transformations given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
基金the National Natural Seienee Foundation of China(Grant Nos10172097,19902022,19672074)
文摘By a novel approach proposed by Luo, the unconventional Hamilton-type variational principle in phase space for elastodynamics of multidegree-of-freedom system is established in this paper. It not only can fully characterize the initial-value problem of this dynamic, but also has a natural symplectic structure. Based on this variational principle, a symplectic algorithm which is called a symplectic time-subdomain method is proposed. A non-difference scheme is constructed by applying Lagrange interpolation polynomial to the time subdomain. Furthermore, it is also proved that the presented symplectic algorithm is an unconditionally stable one. From the results of the two numerical examples of different types, it can be seen that the accuracy and the computational efficiency of the new method excel obviously those of widely used Wilson-? and Newmark-? methods. Therefore, this new algorithm is a highly efficient one with better computational performance.
文摘This paper presents the generalized principles of least action of variable mass nonholonomic nonconservative system in noninertial reference frame, proves the equivalence between Holder form and Suslov form, and then obtains differential equations of motion of variable mass nonholonomic nonconservative system in noninertial reference frame.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19872022)the Doctoral Education Foundation of China (Grant No. 97021710)
文摘By using the involutory transformations, the classical variational principle——Hamiltonian principle of two kinds of variables in general mechanics is advanced and by using undetermined Lagrangian multiplier method, the generalized variational principles and generalized variational principles with subsidiary conditions are established. The stationary conditions of various kinds of variational principles are derived and the relational problems discussed.
基金the Natural Science Foundation of Jiangxi Provincethe Foundation of Education Department of Jiangxi Province under Grant No.[2007]136
文摘In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.
文摘With classical variable mass and relativistic variable mass cases being considered.the relativistic D' Alembert principles of Lagrange form Nielsen form and Appell. form for variable mass controllable mechanical system are given the relativistic Chaplygin equation. Nielsen equation and Appell equation .for variable mass controllable mechanical system in quasi-coordinates and generalized- coordinates are obtained, and the equations of motion of relativistic controllable mechanical system for holonomic system and constant mass system are diseussed
基金Supported by the National Natural Science Foundation of China (Grant No. 10272034)the Research Fund for the Doctoral Program of Higher Education of Chinathe Basic Research Foundation of Harbin Engineering University (Grant No. 20060217020)
文摘By the generalized variational principle of two kinds of variables in general me-chanics,it was demonstrated that two Lagrangian classical relationships can be applied to both holonomic systems and nonholonomic systems. And the restriction that two Lagrangian classical relationships cannot be applied to nonholonomic systems for a long time was overcome. Then,one important formula of similar La-grangian classical relationship called the popularized Lagrangian classical rela-tionship was derived. From Vakonomic model,by two Lagrangian classical rela-tionships and the popularized Lagrangian classical relationship,the result is the same with Chetaev's model,and thus Chetaev's model and Vakonomic model were unified. Simultaneously,the Lagrangian theoretical framework of dynamics of nonholonomic system was established. By some representative examples,it was validated that the Lagrangian theoretical framework of dynamics of nonholonomic systems is right.
基金Project supported by the National Natural Science Foundation of China(Nos.11172334 and11202247)the Fundamental Research Funds for the Central Universities(No.2013390003161292)
文摘This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.
文摘In this paper, the Gibbs-Appell's equations of motion are extended to the most general variable mass nonholonomie mechanical systems. Then the Gibbs-Appell's equations of motion in terms of generalized coordinates or quasi-coordinates and an integral variational principle of variable mass nonlinear nonholonomie mechanical systems are obtained. Finally, an example is given.
文摘The new variational principle of Gauss's form of nonlinear nonholonomic nonpotential system relative to non-inertial reference frame is established by constructing generalized inertial potentials. Naether's theorem and Naether's inverse theorem of the system above is presented and proved. Finally, one example is given to illustrate the application.