针对TORA(Translational oscillator with rotating actuator)系统的镇定控制问题,提出一种基于θ-D方法的非线性最优控制方案.应用拉格朗日方程建立TORA系统的数学模型,为保证状态空间形式的TORA系统数学模型中状态向量系数矩阵A(x)能...针对TORA(Translational oscillator with rotating actuator)系统的镇定控制问题,提出一种基于θ-D方法的非线性最优控制方案.应用拉格朗日方程建立TORA系统的数学模型,为保证状态空间形式的TORA系统数学模型中状态向量系数矩阵A(x)能够分离出常值矩阵,且其能与控制位置矩阵构成可控对,采用不同于传统形式的解耦坐标变换对TORA系统进行了处理,以此为基础为TORA系统设计基于θ-D方法的非线性最优控制器,该控制方案可离线得到控制输入的显示表达式.通过数值仿真以及与基于局部线性化的线性最优控制方案进行比较,验证了所提非线性最优控制方案所具有的良好瞬态性能.展开更多
假设风险资产(股票)服从CEV(Constant Elasticity of Variance)过程,在考虑交易成本的情况下,构建了同时存在无风险资产和风险资产时,投资者的最优投资策略。以期望效用最大化为目标,运用HJB构造微分方程,并以对数效用函数为例,求出最...假设风险资产(股票)服从CEV(Constant Elasticity of Variance)过程,在考虑交易成本的情况下,构建了同时存在无风险资产和风险资产时,投资者的最优投资策略。以期望效用最大化为目标,运用HJB构造微分方程,并以对数效用函数为例,求出最佳投资比例的解析解。最后,给出了考虑随机利率时的最优策略问题求解。展开更多
文摘针对TORA(Translational oscillator with rotating actuator)系统的镇定控制问题,提出一种基于θ-D方法的非线性最优控制方案.应用拉格朗日方程建立TORA系统的数学模型,为保证状态空间形式的TORA系统数学模型中状态向量系数矩阵A(x)能够分离出常值矩阵,且其能与控制位置矩阵构成可控对,采用不同于传统形式的解耦坐标变换对TORA系统进行了处理,以此为基础为TORA系统设计基于θ-D方法的非线性最优控制器,该控制方案可离线得到控制输入的显示表达式.通过数值仿真以及与基于局部线性化的线性最优控制方案进行比较,验证了所提非线性最优控制方案所具有的良好瞬态性能.
文摘假设风险资产(股票)服从CEV(Constant Elasticity of Variance)过程,在考虑交易成本的情况下,构建了同时存在无风险资产和风险资产时,投资者的最优投资策略。以期望效用最大化为目标,运用HJB构造微分方程,并以对数效用函数为例,求出最佳投资比例的解析解。最后,给出了考虑随机利率时的最优策略问题求解。