According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrica...According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures are established systematically, which can fully characterize the initial-boundary-value problem of this kind of dynamics. An ifnportant integral relation is made, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on such relationship, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given in this paper, Furthermore, the intrinsic relationship among various principles can be explained clearly with this approach.展开更多
In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equa...In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.展开更多
This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for appli...This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.展开更多
By a novel approach proposed by Luo, the unconventional Hamilton-type variational principle in phase space for elastodynamics of multidegree-of-freedom system is established in this paper. It not only can fully charac...By a novel approach proposed by Luo, the unconventional Hamilton-type variational principle in phase space for elastodynamics of multidegree-of-freedom system is established in this paper. It not only can fully characterize the initial-value problem of this dynamic, but also has a natural symplectic structure. Based on this variational principle, a symplectic algorithm which is called a symplectic time-subdomain method is proposed. A non-difference scheme is constructed by applying Lagrange interpolation polynomial to the time subdomain. Furthermore, it is also proved that the presented symplectic algorithm is an unconditionally stable one. From the results of the two numerical examples of different types, it can be seen that the accuracy and the computational efficiency of the new method excel obviously those of widely used Wilson-? and Newmark-? methods. Therefore, this new algorithm is a highly efficient one with better computational performance.展开更多
In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances....In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi's nonconvex minimization theorem, a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland's variational principle, we deduce a number of particular versions of Ekeland's principle, which include many known versions of the principle and their improvements.展开更多
The main purpose of this paper is to establish the Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces and to give a direct simple proofof the equivalence between these tw...The main purpose of this paper is to establish the Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces and to give a direct simple proofof the equivalence between these two theorems in the probabilistic metric space. The resultspresented in this paper generalize the corresponding results of [9--12].展开更多
By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a ne...By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.展开更多
We give a general vectorial Ekeland's variational principle, where the objective function is defined on an F-type topological space and taking values in a pre-ordered real linear space. Being quite different from the...We give a general vectorial Ekeland's variational principle, where the objective function is defined on an F-type topological space and taking values in a pre-ordered real linear space. Being quite different from the previous versions of vectorial Ekeland's variational principle, the perturbation in our version is no longer only dependent on a fixed positive vector or a fixed family of positive vectors. It contains a family of set-valued functions taking values in the positive cone and a family of subadditive functions of topology generating quasi-metrics. Hence, the direction of the perturbation in the new version is a family of variable subsets which are dependent on the objective function values. The general version includes and improves a number of known versions of vectorial Ekeland's variational principle. From the general Ekeland's principle, we deduce the corresponding versions of Caristi-Kirk's fixed point theorem and Takahashi's nonconvex minimization theorem. Finally, we prove that all the three theorems are equivalent to each other.展开更多
基金Project supported by the National Natural Science Foundation of China(No.10172097)the Doctoral Foundation of Ministry of Education of China(No.20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures are established systematically, which can fully characterize the initial-boundary-value problem of this kind of dynamics. An ifnportant integral relation is made, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on such relationship, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given in this paper, Furthermore, the intrinsic relationship among various principles can be explained clearly with this approach.
基金the Natural Science Foundation of Jiangxi Provincethe Foundation of Education Department of Jiangxi Province under Grant No.[2007]136
文摘In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.
基金Project supported by the National Natural Science Foundation of China(Nos.11172334 and11202247)the Fundamental Research Funds for the Central Universities(No.2013390003161292)
文摘This paper develops a new approach to construct variational integrators. A simplified unconventional Hamilton's variational principle corresponding to initial value problems is proposed, which is convenient for applications. The displacement and mo- mentum are approximated with the same Lagrange interpolation. After the numerical integration and variational operation, the original problems are expressed as algebraic equations with the displacement and momentum at the interpolation points as unknown variables. Some particular variational integrators are derived. An optimal scheme of choosing initial values for the Newton-Raphson method is presented for the nonlinear dynamic system. In addition, specific examples show that the proposed integrators are symplectic when the interpolation point coincides with the numerical integration point, and both are Gaussian quadrature points. Meanwhile, compared with the same order symplectic Runge-Kutta methods, although the accuracy of the two methods is almost the same, the proposed integrators are much simpler and less computationally expensive.
基金the National Natural Seienee Foundation of China(Grant Nos10172097,19902022,19672074)
文摘By a novel approach proposed by Luo, the unconventional Hamilton-type variational principle in phase space for elastodynamics of multidegree-of-freedom system is established in this paper. It not only can fully characterize the initial-value problem of this dynamic, but also has a natural symplectic structure. Based on this variational principle, a symplectic algorithm which is called a symplectic time-subdomain method is proposed. A non-difference scheme is constructed by applying Lagrange interpolation polynomial to the time subdomain. Furthermore, it is also proved that the presented symplectic algorithm is an unconditionally stable one. From the results of the two numerical examples of different types, it can be seen that the accuracy and the computational efficiency of the new method excel obviously those of widely used Wilson-? and Newmark-? methods. Therefore, this new algorithm is a highly efficient one with better computational performance.
基金Supported by National Natural Science Foundation of China(Grant No.10871141)
文摘In this paper, we attempt to give a unified approach to the existing several versions of Ekeland's variational principle. In the framework of uniiorm spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi's nonconvex minimization theorem, a generalized Ekeland's variational principle and a generalized Caristi's fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland's variational principle, we deduce a number of particular versions of Ekeland's principle, which include many known versions of the principle and their improvements.
基金The project is supported by National Natural Science Foundation of China
文摘The main purpose of this paper is to establish the Ekeland’s variational principle andCaristi’s fixed point theorem in probabilistic metric spaces and to give a direct simple proofof the equivalence between these two theorems in the probabilistic metric space. The resultspresented in this paper generalize the corresponding results of [9--12].
基金Supported by National Natural Science Foundation of China(Grant No.10871141)
文摘By using the concept of cone extensions and Dancs-Hegedus-Medvegyev theorem, Ha [Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl., 124, 187-206 (2005)] established a new version of Ekeland's variational principle for set-valued maps, which is expressed by the existence of strict approximate minimizer for a set-valued optimization problem. In this paper, we give an improvement of Ha's version of set-valued Ekeland's variational principle. Our proof is direct and it need not use Dancs-Hegedus-Medvegyev theorem. From the improved Ha's version, we deduce a Caristi-Kirk's fixed point theorem and a Takahashi's nonconvex minimization theorem for set-valued maps. Moreover, we prove that the above three theorems are equivalent to each other.
基金Supported by National Natural Science Foundation of China(Grant Nos.10871141,11471236)
文摘We give a general vectorial Ekeland's variational principle, where the objective function is defined on an F-type topological space and taking values in a pre-ordered real linear space. Being quite different from the previous versions of vectorial Ekeland's variational principle, the perturbation in our version is no longer only dependent on a fixed positive vector or a fixed family of positive vectors. It contains a family of set-valued functions taking values in the positive cone and a family of subadditive functions of topology generating quasi-metrics. Hence, the direction of the perturbation in the new version is a family of variable subsets which are dependent on the objective function values. The general version includes and improves a number of known versions of vectorial Ekeland's variational principle. From the general Ekeland's principle, we deduce the corresponding versions of Caristi-Kirk's fixed point theorem and Takahashi's nonconvex minimization theorem. Finally, we prove that all the three theorems are equivalent to each other.