Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically o...Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically only guarantee convergence to local minima.This work presents Hamilton-Jacobi-based Moreau adaptive descent(HJ-MAD),a zero-order algorithm with guaranteed convergence to global minima,assuming continuity of the objective function.The core idea is to compute gradients of the Moreau envelope of the objective(which is"piece-wise convex")with adaptive smoothing parameters.Gradients of the Moreau envelope(i.e.,proximal operators)are approximated via the Hopf-Lax formula for the viscous Hamilton-Jacobi equation.Our numerical examples illustrate global convergence.展开更多
In this paper,we give the geometric constraint conditions of a canonical symplectic form and regular reduced symplectic forms for the dynamical vector fields of a regular controlled Hamiltonian(RCH)system and its regu...In this paper,we give the geometric constraint conditions of a canonical symplectic form and regular reduced symplectic forms for the dynamical vector fields of a regular controlled Hamiltonian(RCH)system and its regular reduced systems,which are called the Type I and Type II Hamilton-Jacobi equations.First,we prove two types of Hamilton-Jacobi theorems for an RCH system on the cotangent bundle of a configuration manifold by using the canonical symplectic form and its dynamical vector field.Second,we generalize the above results for a regular reducible RCH system with symmetry and a momentum map,and derive precisely two types of Hamilton-Jacobi equations for the regular point reduced RCH system and the regular orbit reduced RCH system.Third,we prove that the RCH-equivalence for the RCH system,and the RpCH-equivalence and RoCH-equivalence for the regular reducible RCH systems with symmetries,leave the solutions of corresponding Hamilton-Jacobi equations invariant.Finally,as an application of the theoretical results,we show the Type I and Type II Hamilton-Jacobi equations for the Rp-reduced controlled rigid body-rotor system and the Rp-reduced controlled heavy top-rotor system on the generalizations of the rotation group SO(3)and the Euclidean group SE(3),respectively.This work reveals the deeply internal relationships of the geometrical structures of phase spaces,the dynamical vector fields and the controls of the RCH system.展开更多
基金partially funded by AFOSR MURI FA9550-18-502,ONR N00014-18-1-2527,N00014-18-20-1-2093,N00014-20-1-2787supported by the NSF Graduate Research Fellowship under Grant No.DGE-1650604.
文摘Computing tasks may often be posed as optimization problems.The objective functions for real-world scenarios are often nonconvex and/or nondifferentiable.State-of-the-art methods for solving these problems typically only guarantee convergence to local minima.This work presents Hamilton-Jacobi-based Moreau adaptive descent(HJ-MAD),a zero-order algorithm with guaranteed convergence to global minima,assuming continuity of the objective function.The core idea is to compute gradients of the Moreau envelope of the objective(which is"piece-wise convex")with adaptive smoothing parameters.Gradients of the Moreau envelope(i.e.,proximal operators)are approximated via the Hopf-Lax formula for the viscous Hamilton-Jacobi equation.Our numerical examples illustrate global convergence.
基金partially supported by the Nankai University 985 Projectthe Key Laboratory of Pure Mathematics and Combinatorics,Ministry of Education,Chinathe NSFC(11531011)。
文摘In this paper,we give the geometric constraint conditions of a canonical symplectic form and regular reduced symplectic forms for the dynamical vector fields of a regular controlled Hamiltonian(RCH)system and its regular reduced systems,which are called the Type I and Type II Hamilton-Jacobi equations.First,we prove two types of Hamilton-Jacobi theorems for an RCH system on the cotangent bundle of a configuration manifold by using the canonical symplectic form and its dynamical vector field.Second,we generalize the above results for a regular reducible RCH system with symmetry and a momentum map,and derive precisely two types of Hamilton-Jacobi equations for the regular point reduced RCH system and the regular orbit reduced RCH system.Third,we prove that the RCH-equivalence for the RCH system,and the RpCH-equivalence and RoCH-equivalence for the regular reducible RCH systems with symmetries,leave the solutions of corresponding Hamilton-Jacobi equations invariant.Finally,as an application of the theoretical results,we show the Type I and Type II Hamilton-Jacobi equations for the Rp-reduced controlled rigid body-rotor system and the Rp-reduced controlled heavy top-rotor system on the generalizations of the rotation group SO(3)and the Euclidean group SE(3),respectively.This work reveals the deeply internal relationships of the geometrical structures of phase spaces,the dynamical vector fields and the controls of the RCH system.