Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identi...Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity, and the conserved functionals were proved to be in involution in pairs under the defined Poisson bracket. As its reduction,special cases of this nonlinear super integrable couplings were obtained.展开更多
The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the multi-component Guo hierarchy, integrable coupling of Guo hierarchy and (2+l)-dimensional Guo hierarchy are obtained ...The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the multi-component Guo hierarchy, integrable coupling of Guo hierarchy and (2+l)-dimensional Guo hierarchy are obtained by the quadraticform identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies.展开更多
This paper obtains the multi-component Harry-Dym (HI)) hierarchy and its integrable couplings by using two kinds of vector loop algebras G^-3 and G^-6. The Hamiltonian structures of the above system are given by th...This paper obtains the multi-component Harry-Dym (HI)) hierarchy and its integrable couplings by using two kinds of vector loop algebras G^-3 and G^-6. The Hamiltonian structures of the above system are given by the quadraticform identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies.展开更多
We have proved that any 3-dimensional dynamical system of ordinary differentialequations(in short, 3D ODE)With time-independent invariants can be rewritten asHaniltonian systems with respect to generalized Poisson bra...We have proved that any 3-dimensional dynamical system of ordinary differentialequations(in short, 3D ODE)With time-independent invariants can be rewritten asHaniltonian systems with respect to generalized Poisson brackets and theHamiltonians are these invariants. As an example,we discuss the Kermack-Mckendrick modelfor epidemics in detail. The results we obtained are generalizatioof those obtained by Y. Nutku.展开更多
We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and the...We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.展开更多
We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra.Then its super Hamiltonian structure is furnished by super trace identity.As its r...We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra.Then its super Hamiltonian structure is furnished by super trace identity.As its reduction,we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.展开更多
We construct a loop algebra 3 , then a new 4×4 isospectral problem is presented. By Tu scheme, the generalized coupled mKdV equation hierarchy is derived. Based on an expanding loop algebra F3 of the loop algebra...We construct a loop algebra 3 , then a new 4×4 isospectral problem is presented. By Tu scheme, the generalized coupled mKdV equation hierarchy is derived. Based on an expanding loop algebra F3 of the loop algebra 3 , the integrable couplings of the generalized coupled mKdV hierarchy is solved. Finally, the Hamiltonian structures of the integrable couplings of the generalized coupled mKdV hierarchy is obtained by the quadratic-form identity.展开更多
With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are g...With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie–Poisson bracket. The recursion operators of these lattice systems are constructed starting from Lax representations. Finally, reducing the given shift operators to get a simpler one and its expanding shift operators, we produce a lattice system with three vector fields whose recursion operator is given. Furthermore,we reduce the lattice system with three vector fields to get a lattice system whose Lax pair and conservation laws are obtained, respectively.展开更多
By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-f...By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.展开更多
This paper establishes a new isospectral problem. By making use of the Tu scheme, a new intcgrablc system is obtained. It gives integrable couplings of the system obtained. Finally, the Hamiltonian form of a binary sy...This paper establishes a new isospectral problem. By making use of the Tu scheme, a new intcgrablc system is obtained. It gives integrable couplings of the system obtained. Finally, the Hamiltonian form of a binary symmetric constrained flow of the system obtained is presented.展开更多
Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplin...Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.展开更多
Hamiltonian structure of a rigid body in a circular orbit is established in this paper. With the reduction technique, the Hamiltonian structure of a rigid body in a circular orbit is derived from Lie-Poisson structure...Hamiltonian structure of a rigid body in a circular orbit is established in this paper. With the reduction technique, the Hamiltonian structure of a rigid body in a circular orbit is derived from Lie-Poisson structure of semidirect product, and Hamiltonian is derived from Jacobi's integral. The above method can be generalized to establish the Hamiltonian structure of a rigid body with a flexible attachment in a circular or- bit. At last, an example of stability analysis is given.展开更多
A new discrete isospectral problem is introduced,from which a hierarchy of Lax i ntegrable lattice equation is deduced. By using the trace identity,the correspon ding Hamiltonian structure is given and its Liouville i...A new discrete isospectral problem is introduced,from which a hierarchy of Lax i ntegrable lattice equation is deduced. By using the trace identity,the correspon ding Hamiltonian structure is given and its Liouville integrability is proved.展开更多
With the help of a Lie algebra, an isospectral Lax pair is introduced for which a new Liouville integrable hierarchy of evolution equations is generated. Its Hamiltonian structure is also worked out by use of the quad...With the help of a Lie algebra, an isospectral Lax pair is introduced for which a new Liouville integrable hierarchy of evolution equations is generated. Its Hamiltonian structure is also worked out by use of the quadratic-form identity.展开更多
A type of higher-dimensionaJ loop algebra is constructed from which an isospectral problem is established. It follows that an integrable coupling, actually an extended integrable model of the existed solitary hierarch...A type of higher-dimensionaJ loop algebra is constructed from which an isospectral problem is established. It follows that an integrable coupling, actually an extended integrable model of the existed solitary hierarchy of equations, is obtained by taking use of the zero curvature equation, whose Hamiltonian structure is worked out by employing the constructed quadratic identity.展开更多
In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtai...In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtained by employing the Tu scheme, whose Hamiltonian structure is worked out by making use of constructed quadratic identity. The method given in the paper can be used to obtain many other integrable couplings and their Hamiltonian structures.展开更多
The Hamiltonian structure of.the integrable couplings obtained by our method has not been solved. In this paper, the Hamiltonian structure of the KN hierarchy is obtained by making use of the quadratlc-form identity.
In this paper, we first introduce a Lie algebra of the special orthogonal group, g = so(4, C), whose elements are 4 × 4trace-free, skew-symmetric complex matrices. As its application, we obtain a new soliton hier...In this paper, we first introduce a Lie algebra of the special orthogonal group, g = so(4, C), whose elements are 4 × 4trace-free, skew-symmetric complex matrices. As its application, we obtain a new soliton hierarchy which is reduced to AKNS hierarchy and present its bi-Hamiltonian structure and Liouville integrability. Furthermore, for one of the equations in the resulting hierarchy, we construct a Darboux matrix T depending on the spectral parameter λ.展开更多
A direct method of constructing the Hamiltonian structure of the soliton hierarchy with self-consistent sources is proposed through computing the functional derivative under some constraints. The Hamiltonian functiona...A direct method of constructing the Hamiltonian structure of the soliton hierarchy with self-consistent sources is proposed through computing the functional derivative under some constraints. The Hamiltonian functional is related with the conservation densities of the corresponding hierarchy. Three examples and their two reductions are given.展开更多
A 3-dimensional Lie algebra sμ(3) is obtained with the help of the known Lie algebra. Based on the sμ(3), a new discrete 3 × 3 matrix spectral problem with three potentials is constructed. In virtue of disc...A 3-dimensional Lie algebra sμ(3) is obtained with the help of the known Lie algebra. Based on the sμ(3), a new discrete 3 × 3 matrix spectral problem with three potentials is constructed. In virtue of discrete zero curvature equations, a new matrix Lax representation for the hierarchy of the discrete lattice soliton equations is acquired. It is shown that the hierarchy possesses a Hamiltonian operator and a hereditary recursion operator, which implies that there exist infinitely many common commuting symmetries and infinitely many common commuting conserved functionals.展开更多
基金Supported by the Natural Science Foundation of Henan Province(162300410075) the Science and Technology Key Research Foundation of the Education Department of Henan Province(14A110010) the Youth Backbone Teacher Foundationof Shangqiu Normal University(2013GGJS02)
文摘Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then its super Hamiltonian structures were established by using super trace identity, and the conserved functionals were proved to be in involution in pairs under the defined Poisson bracket. As its reduction,special cases of this nonlinear super integrable couplings were obtained.
文摘The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the multi-component Guo hierarchy, integrable coupling of Guo hierarchy and (2+l)-dimensional Guo hierarchy are obtained by the quadraticform identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies.
文摘This paper obtains the multi-component Harry-Dym (HI)) hierarchy and its integrable couplings by using two kinds of vector loop algebras G^-3 and G^-6. The Hamiltonian structures of the above system are given by the quadraticform identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies.
文摘We have proved that any 3-dimensional dynamical system of ordinary differentialequations(in short, 3D ODE)With time-independent invariants can be rewritten asHaniltonian systems with respect to generalized Poisson brackets and theHamiltonians are these invariants. As an example,we discuss the Kermack-Mckendrick modelfor epidemics in detail. The results we obtained are generalizatioof those obtained by Y. Nutku.
文摘We present an eight component integrable Hamiltonian hierarchy, based on a reduced seventh order matrix spectral problem, with the aim of aiding the study and classification of multicomponent integrable models and their underlying mathematical structures. The zero-curvature formulation is the tool to construct a recursion operator from the spatial matrix problem. The second and third set of integrable equations present integrable nonlinear Schrödinger and modified Korteweg-de Vries type equations, respectively. The trace identity is used to construct Hamiltonian structures, and the first three Hamiltonian functionals so generated are computed.
基金Supported by the Natural Science Foundation of China under Grant No. 60972164the Program for Liaoning Excellent Talents in University under Grant No. LJQ2011136+2 种基金the Key Technologies R&D Program of Liaoning Province under Grant No. 2011224006the Program for Liaoning Innovative Research Team in University under Grant No. LT2011019the Science and Technology Program of Shenyang under Grant No. F11-264-1-70
文摘We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra.Then its super Hamiltonian structure is furnished by super trace identity.As its reduction,we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy.
基金supported by the National Natural Science Foundation of China (Grant Nos.11271008, 61072147, 1071159)the Shanghai Leading Academic Discipline Project (No.J50101)+2 种基金the Shanghai Univ. Leading Academic Discipline Project (A.13-0101-12-004)the Youth Foundation of Zhoukou Normal University (2012QNB09)Science and Technology Project of Henan Province (132400410582)
文摘We construct a loop algebra 3 , then a new 4×4 isospectral problem is presented. By Tu scheme, the generalized coupled mKdV equation hierarchy is derived. Based on an expanding loop algebra F3 of the loop algebra 3 , the integrable couplings of the generalized coupled mKdV hierarchy is solved. Finally, the Hamiltonian structures of the integrable couplings of the generalized coupled mKdV hierarchy is obtained by the quadratic-form identity.
基金Supported by the National Natural Science Foundation of China under Grant No.11371361the Innovation Team of Jiangsu Province Hosted by China University of Mining and Technology(2014)+4 种基金the the Key Discipline Construction by China University of Mining and Technology under Grant No.XZD201602the Shandong Provincial Natural Science Foundation,China under Grant Nos.ZR2016AM31,ZR2016AQ19,ZR2015EM042the Development of Science and Technology Plan Projects of Tai An City under Grant No.2015NS1048National Social Science Foundation of China under Grant No.13BJY026A Project of Shandong Province Higher Educational Science and Technology Program under Grant No.J14LI58
文摘With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie–Poisson bracket. The recursion operators of these lattice systems are constructed starting from Lax representations. Finally, reducing the given shift operators to get a simpler one and its expanding shift operators, we produce a lattice system with three vector fields whose recursion operator is given. Furthermore,we reduce the lattice system with three vector fields to get a lattice system whose Lax pair and conservation laws are obtained, respectively.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality (S30104)
文摘By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.
基金Project supported by the National Natural Science Foundation of China (Grant No 10371070), the Special Funds for Major Specialities of Shanghai Educational Committee and Science Foundation of Educational Committee of Liaoning Province of China (Grant No 2004C057). Xia T Ch would like to express his sincere thanks to Professors Zhang Y F and Guo F K for valuable discussions.
文摘This paper establishes a new isospectral problem. By making use of the Tu scheme, a new intcgrablc system is obtained. It gives integrable couplings of the system obtained. Finally, the Hamiltonian form of a binary symmetric constrained flow of the system obtained is presented.
文摘Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.
基金The projeet supported by National Natural Science Foundation of China and Aeronautic Science Foundation.
文摘Hamiltonian structure of a rigid body in a circular orbit is established in this paper. With the reduction technique, the Hamiltonian structure of a rigid body in a circular orbit is derived from Lie-Poisson structure of semidirect product, and Hamiltonian is derived from Jacobi's integral. The above method can be generalized to establish the Hamiltonian structure of a rigid body with a flexible attachment in a circular or- bit. At last, an example of stability analysis is given.
文摘A new discrete isospectral problem is introduced,from which a hierarchy of Lax i ntegrable lattice equation is deduced. By using the trace identity,the correspon ding Hamiltonian structure is given and its Liouville integrability is proved.
文摘With the help of a Lie algebra, an isospectral Lax pair is introduced for which a new Liouville integrable hierarchy of evolution equations is generated. Its Hamiltonian structure is also worked out by use of the quadratic-form identity.
基金Supported by the Scientific Research Ability Foundation for Young Teacher of Northwest Normal University under Grant No.NWNULKQN -10-25
文摘A type of higher-dimensionaJ loop algebra is constructed from which an isospectral problem is established. It follows that an integrable coupling, actually an extended integrable model of the existed solitary hierarchy of equations, is obtained by taking use of the zero curvature equation, whose Hamiltonian structure is worked out by employing the constructed quadratic identity.
文摘In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtained by employing the Tu scheme, whose Hamiltonian structure is worked out by making use of constructed quadratic identity. The method given in the paper can be used to obtain many other integrable couplings and their Hamiltonian structures.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471139
文摘The Hamiltonian structure of.the integrable couplings obtained by our method has not been solved. In this paper, the Hamiltonian structure of the KN hierarchy is obtained by making use of the quadratlc-form identity.
基金supported by the National Natural Science Foundation of China(Grant Nos.61170183 and 11271007)SDUST Research Fund,China(Grant No.2014TDJH102)+2 种基金the Fund from the Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources,Shandong Provincethe Promotive Research Fund for Young and Middle-aged Scientisits of Shandong Province,China(Grant No.BS2013DX012)the Postdoctoral Fund of China(Grant No.2014M551934)
文摘In this paper, we first introduce a Lie algebra of the special orthogonal group, g = so(4, C), whose elements are 4 × 4trace-free, skew-symmetric complex matrices. As its application, we obtain a new soliton hierarchy which is reduced to AKNS hierarchy and present its bi-Hamiltonian structure and Liouville integrability. Furthermore, for one of the equations in the resulting hierarchy, we construct a Darboux matrix T depending on the spectral parameter λ.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10371070, 10671121the President Foundation of East China Institute of Technology under Grant No. DHXK0810
文摘A direct method of constructing the Hamiltonian structure of the soliton hierarchy with self-consistent sources is proposed through computing the functional derivative under some constraints. The Hamiltonian functional is related with the conservation densities of the corresponding hierarchy. Three examples and their two reductions are given.
基金Supported by the Science and Technology Plan project of the Educational Department of Shandong Province of China under Grant No. J09LA54the research project of "SUST Spring Bud" of Shandong university of science and technology of China under Grant No. 2009AZZ071
文摘A 3-dimensional Lie algebra sμ(3) is obtained with the help of the known Lie algebra. Based on the sμ(3), a new discrete 3 × 3 matrix spectral problem with three potentials is constructed. In virtue of discrete zero curvature equations, a new matrix Lax representation for the hierarchy of the discrete lattice soliton equations is acquired. It is shown that the hierarchy possesses a Hamiltonian operator and a hereditary recursion operator, which implies that there exist infinitely many common commuting symmetries and infinitely many common commuting conserved functionals.