As conducting an impact hammer testing during experimental modal analysis,the multiple impact phenomenon must be avoided.It is generally recognized that the multiple impact phenomenon is induced by the tester’s impro...As conducting an impact hammer testing during experimental modal analysis,the multiple impact phenomenon must be avoided.It is generally recognized that the multiple impact phenomenon is induced by the tester’s improper operation and can be avoided through more careful operation.This study theoretically and numerically investigates the whole process of the dynamical interaction between the hammer tip and the impacted structure and discovers the intrinsically physical mechanism of the multiple impact phenomenon.The determination of the interacting process comes down to solve two sets of governing differential equations alternately,and the effectiveness of the theoretical analysis is validated by numerical simulations.Four dimensionless parameters governing the interacting process are recognized in the theoretical framework.The critical stiffness ratio for a given impacted location and the critical impacted location for a given stiffness ratio are analytically determined.These results can guide impact hammer testing to avoid the occurrence of multiple impact by suggesting the hammer tip and impacted locations.展开更多
In order to prevent unwanted excited vibrations and to secure better machining precision in large size heavy duty machine tools dynamic stiffness is one of the most desirable and critical properties. In the past decad...In order to prevent unwanted excited vibrations and to secure better machining precision in large size heavy duty machine tools dynamic stiffness is one of the most desirable and critical properties. In the past decades, many researches on machine tool stiffness test and evaluation methodology have been made. However any methodology for a Pin Turning Device (PTD), which is a special kind of turning lathe for machining big size crankshaft pins, is rarely found among them. This study proposes a test and evaluation process of stiffness of a PTD by measuring frequency response function at the tool center point (TCP). For conformance proving for the proposed methodology, stiffness of a PTD obtained by the proposed method with impact hammer test (IHT) has been compared with that determined by FEM.展开更多
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ...Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.展开更多
基金the National Natural Science Foundation of China under Grant Nos.11872328,11532011,and 11621062.
文摘As conducting an impact hammer testing during experimental modal analysis,the multiple impact phenomenon must be avoided.It is generally recognized that the multiple impact phenomenon is induced by the tester’s improper operation and can be avoided through more careful operation.This study theoretically and numerically investigates the whole process of the dynamical interaction between the hammer tip and the impacted structure and discovers the intrinsically physical mechanism of the multiple impact phenomenon.The determination of the interacting process comes down to solve two sets of governing differential equations alternately,and the effectiveness of the theoretical analysis is validated by numerical simulations.Four dimensionless parameters governing the interacting process are recognized in the theoretical framework.The critical stiffness ratio for a given impacted location and the critical impacted location for a given stiffness ratio are analytically determined.These results can guide impact hammer testing to avoid the occurrence of multiple impact by suggesting the hammer tip and impacted locations.
文摘In order to prevent unwanted excited vibrations and to secure better machining precision in large size heavy duty machine tools dynamic stiffness is one of the most desirable and critical properties. In the past decades, many researches on machine tool stiffness test and evaluation methodology have been made. However any methodology for a Pin Turning Device (PTD), which is a special kind of turning lathe for machining big size crankshaft pins, is rarely found among them. This study proposes a test and evaluation process of stiffness of a PTD by measuring frequency response function at the tool center point (TCP). For conformance proving for the proposed methodology, stiffness of a PTD obtained by the proposed method with impact hammer test (IHT) has been compared with that determined by FEM.
基金supported by the National Natural Science Foundation of China(No.52079133)CRSRI Open Research Program(Program SN:CKWV2019746/KY)+1 种基金the project of Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(QTKS0034W23291)the Youth Innovation Promotion Association CAS.
文摘Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.