期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Performance Analysis of Machine Learning Algorithms for Classifying Hand Motion-Based EEG Brain Signals
1
作者 Ayman Altameem Jaideep Singh Sachdev +3 位作者 Vijander Singh Ramesh Chandra Poonia Sandeep Kumar Abdul Khader Jilani Saudagar 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1095-1107,共13页
Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which... Brain-computer interfaces (BCIs) records brain activity using electroencephalogram (EEG) headsets in the form of EEG signals;these signals can berecorded, processed and classified into different hand movements, which can beused to control other IoT devices. Classification of hand movements will beone step closer to applying these algorithms in real-life situations using EEGheadsets. This paper uses different feature extraction techniques and sophisticatedmachine learning algorithms to classify hand movements from EEG brain signalsto control prosthetic hands for amputated persons. To achieve good classificationaccuracy, denoising and feature extraction of EEG signals is a significant step. Wesaw a considerable increase in all the machine learning models when the movingaverage filter was applied to the raw EEG data. Feature extraction techniques likea fast fourier transform (FFT) and continuous wave transform (CWT) were usedin this study;three types of features were extracted, i.e., FFT Features, CWTCoefficients and CWT scalogram images. We trained and compared differentmachine learning (ML) models like logistic regression, random forest, k-nearestneighbors (KNN), light gradient boosting machine (GBM) and XG boost onFFT and CWT features and deep learning (DL) models like VGG-16, DenseNet201 and ResNet50 trained on CWT scalogram images. XG Boost with FFTfeatures gave the maximum accuracy of 88%. 展开更多
关键词 Machine learning brain signal hand motion recognition braincomputer interface convolutional neural networks
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部