期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Research on Handwritten Chinese Character Recognition Based on BP Neural Network 被引量:1
1
作者 Zihao Ning 《Modern Electronic Technology》 2022年第1期12-32,共21页
The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object ... The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object in image pattern recognition,has many applications in people’s daily life,and more and more scholars are beginning to study off-line handwritten Chinese character recognition.This paper mainly studies the recognition of handwritten Chinese characters by BP(Back Propagation)neural network.Establish a handwritten Chinese character recognition model based on BP neural network,and then verify the accuracy and feasibility of the neural network through GUI(Graphical User Interface)model established by Matlab.This paper mainly includes the following aspects:Firstly,the preprocessing process of handwritten Chinese character recognition in this paper is analyzed.Among them,image preprocessing mainly includes six processes:graying,binarization,smoothing and denoising,character segmentation,histogram equalization and normalization.Secondly,through the comparative selection of feature extraction methods for handwritten Chinese characters,and through the comparative analysis of the results of three different feature extraction methods,the most suitable feature extraction method for this paper is found.Finally,it is the application of BP neural network in handwritten Chinese character recognition.The establishment,training process and parameter selection of BP neural network are described in detail.The simulation software platform chosen in this paper is Matlab,and the sample images are used to train BP neural network to verify the feasibility of Chinese character recognition.Design the GUI interface of human-computer interaction based on Matlab,show the process and results of handwritten Chinese character recognition,and analyze the experimental results. 展开更多
关键词 Pattern recognition handwritten chinese character recognition BP neural network
下载PDF
An approach to offline handwritten Chinese character recognition based on segment evaluation of adaptive duration
2
作者 李国宏 施鹏飞 《Journal of Zhejiang University Science》 CSCD 2004年第11期1392-1397,共6页
This paper presents a methodology for off-line handwritten Chinese character recognition based on mergence of consecutive segments of adaptive duration. The handwritten Chinese character string is partitioned into a s... This paper presents a methodology for off-line handwritten Chinese character recognition based on mergence of consecutive segments of adaptive duration. The handwritten Chinese character string is partitioned into a sequence of consecutive segments, which are combined to implement dissimilarity evaluation within a sliding window whose durations are determined adaptively by the integration of shapes and context of evaluations. The average stroke width is estimated for the handwritten Chinese character string, and a set of candidate character segmentation boundaries is found by using the integration of pixel and stroke features. The final decisions on segmentation and recognition are made under minimal arithmetical mean dissimilarities. Experiments proved that the proposed approach of adaptive duration outperforms the method of fixed duration, and is very effective for the recognition of overlapped, broken, touched, loosely configured Chinese characters. 展开更多
关键词 handwritten chinese character Segmentation boundary SEGMENT DURATION
下载PDF
Parallel compact integration in handwritten Chinese character recognition 被引量:1
3
作者 WANGChunheng XIAOBaihua DAIRuwei 《Science in China(Series F)》 2004年第1期89-96,共8页
In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is appl... In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is applied to HCCR, and compact MLP network classifier is defined. Human intelligence and computer capabilities are combined together effectively through a procedure of two-step supervised learning. Compared with previous integration schemes, this scheme is characterized with parallel compact structure and better performance. It provides a promising way for applying MLP to large vocabulary classification. 展开更多
关键词 handwritten chinese character recognition (HCCR) METASYNTHESIS multi-layer perceptron (MLP) compact MLP network classifier supervised learning.
原文传递
A New Linguistic Decoding Method for Online Handwritten Chinese Character Recognition
4
作者 徐志明 王晓龙 《Journal of Computer Science & Technology》 SCIE EI CSCD 2000年第6期597-603,共7页
This paper presents a new linguistic decoding method for online handwritten Chinese character recognition. The method employs a hybrid language model which combines N-gram and linguistic rules by rule quantification t... This paper presents a new linguistic decoding method for online handwritten Chinese character recognition. The method employs a hybrid language model which combines N-gram and linguistic rules by rule quantification technique. The linguistic decoding algorithm consists of three stages: word lattice construction, the optimal sentence hypothesis search and self-adaptive learning mechanism. The technique has been applied to palmtop computer's online handwritten Chinese character recognition. Samples containing millions of characters were used to test the linguistic decoder. In the open experiment, accuracy rate up to 92% is achieved, and the error rate is reduced by 68%. 展开更多
关键词 handwritten chinese character recognition N-GRAM linguistic decoding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部