期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进HarDNet-MSEG的遥感影像水体信息提取方法
1
作者
郭慧琳
谢元礼
+3 位作者
胡李发
雍佳乐
李云梅
孙韶启
《地球信息科学学报》
EI
CSCD
北大核心
2024年第7期1745-1762,共18页
准确有效地提取水体信息,对于水资源监测、管理和应用等方面具有重要意义。由于水体形状、大小和分布的多样性以及场景的复杂性,如何高效准确地从遥感影像中提取出水体仍具有挑战性。传统的方法虽然可以从遥感图像中提取水体,但由于异...
准确有效地提取水体信息,对于水资源监测、管理和应用等方面具有重要意义。由于水体形状、大小和分布的多样性以及场景的复杂性,如何高效准确地从遥感影像中提取出水体仍具有挑战性。传统的方法虽然可以从遥感图像中提取水体,但由于异物同谱其提取精度往往难以满足实际应用要求。因此,迫切需要先进的高性能技术来提高水体提取的效率和准确性。将深度学习与遥感技术相结合可以充分发挥深度学习的优势,有效帮助准确地提取水体信息。目前以深度学习的方法提取水体信息面临的挑战仍是多尺度特征融合、耗时长和参数多。HarDNet-MSEG(Harmonic DenseNet-MSEG)模型拥有较高的分割精度和较快的推理速度,为进一步充分利用来自通道和空间位置层面的相关信息以及提高模型的分割精度,本文以HarDNet-MSEG为网络框架,设计了一种名为HAM(Hybrid Attention Mechanism)的注意力机制,将其嵌入到HarDNet-MSEG网络中以探究其在网络中的最佳位置,在相同的实验环境下与其他注意力机制、经典网络算法以及传统的方法进行一系列的对比实验,并测试该模型在其他数据集上的通用性。结果表明,HAM模块在HarDNet-MSEG网络的较浅层处表现最出色。与其他注意力机制相比,HAM模块取得了更高的性能,MIoU、FWIoU和PA分别达到了94.0687%、97.7374%和99.3205%。与DeepLabV3+、U-Net和PSPNet等经典模型相比,HarDNet-MSEG-HAM1模型不仅有最好的MIoU,参数量、计算量和训练时间各方面都表现出卓越的性能。与传统方法相比,HarDNet-MSEG-HAM1模型具有显著的优势,同时该模型在其他数据集上也表现出了良好的性能。最后,成功提取了青藏高原内流流域的2013、2016、2019和2022年4期湖泊,并对其面积变化进行了分析。一系列的实验数据表明,该模型在水体提取任务中的优越性与鲁棒性。本论文预期可以为从复杂场景的遥感影像中提取水体信息提供方法和相关数据支持。
展开更多
关键词
水体提取
深度学习
hardnet-mseg
混合注意力机制
语义分割
多尺度特征
青藏高原
遥感影像
原文传递
题名
改进HarDNet-MSEG的遥感影像水体信息提取方法
1
作者
郭慧琳
谢元礼
胡李发
雍佳乐
李云梅
孙韶启
机构
西北大学城市与环境学院
陕西省遥感与地理信息工程研究中心
出处
《地球信息科学学报》
EI
CSCD
北大核心
2024年第7期1745-1762,共18页
文摘
准确有效地提取水体信息,对于水资源监测、管理和应用等方面具有重要意义。由于水体形状、大小和分布的多样性以及场景的复杂性,如何高效准确地从遥感影像中提取出水体仍具有挑战性。传统的方法虽然可以从遥感图像中提取水体,但由于异物同谱其提取精度往往难以满足实际应用要求。因此,迫切需要先进的高性能技术来提高水体提取的效率和准确性。将深度学习与遥感技术相结合可以充分发挥深度学习的优势,有效帮助准确地提取水体信息。目前以深度学习的方法提取水体信息面临的挑战仍是多尺度特征融合、耗时长和参数多。HarDNet-MSEG(Harmonic DenseNet-MSEG)模型拥有较高的分割精度和较快的推理速度,为进一步充分利用来自通道和空间位置层面的相关信息以及提高模型的分割精度,本文以HarDNet-MSEG为网络框架,设计了一种名为HAM(Hybrid Attention Mechanism)的注意力机制,将其嵌入到HarDNet-MSEG网络中以探究其在网络中的最佳位置,在相同的实验环境下与其他注意力机制、经典网络算法以及传统的方法进行一系列的对比实验,并测试该模型在其他数据集上的通用性。结果表明,HAM模块在HarDNet-MSEG网络的较浅层处表现最出色。与其他注意力机制相比,HAM模块取得了更高的性能,MIoU、FWIoU和PA分别达到了94.0687%、97.7374%和99.3205%。与DeepLabV3+、U-Net和PSPNet等经典模型相比,HarDNet-MSEG-HAM1模型不仅有最好的MIoU,参数量、计算量和训练时间各方面都表现出卓越的性能。与传统方法相比,HarDNet-MSEG-HAM1模型具有显著的优势,同时该模型在其他数据集上也表现出了良好的性能。最后,成功提取了青藏高原内流流域的2013、2016、2019和2022年4期湖泊,并对其面积变化进行了分析。一系列的实验数据表明,该模型在水体提取任务中的优越性与鲁棒性。本论文预期可以为从复杂场景的遥感影像中提取水体信息提供方法和相关数据支持。
关键词
水体提取
深度学习
hardnet-mseg
混合注意力机制
语义分割
多尺度特征
青藏高原
遥感影像
Keywords
water extraction
deep learning
hardnet-mseg
hybrid attention mechanism
semantic segmentation
multi-scale characteristics
Qinghai-Tibet Plateau
remote sensing image
分类号
P237 [天文地球—摄影测量与遥感]
原文传递
题名
作者
出处
发文年
被引量
操作
1
改进HarDNet-MSEG的遥感影像水体信息提取方法
郭慧琳
谢元礼
胡李发
雍佳乐
李云梅
孙韶启
《地球信息科学学报》
EI
CSCD
北大核心
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部